
APMTH-105 Notes Section #5
Matheus C. Fernandes

March 9, 2015

Goals for the week

1. Learn to use a power series approach to solve ODE’s with variable coefficients.

2. Learn how to solve an eigenvalue problem.

3. Learn how to expand a function in a Fourier series.

Problem 1: Finding power series solution of first order ODE
From: Fundamental of Diff. Eq., Nagel 2012

Find a power series solution about x = 0 to

y′+ 2xy = 0 (1)

Solution

The coefficient of y is the polynomial 2x, which is analytic everywhere, so x = 0 is an ordinary1 point of
equation 1. Thus, we expect to find a power series solution of the form

y(x) =
∞

∑
n=0

anxn (2)

where our task is to determine the coefficients an. For this purpose we need the expansion for y′(x) that is
given by termwise differentiation of (2):

y′(x) =
∞

∑
n=1

nanxn−1 (3)

We now substitute the series expansions for y an y′ into (1) and obtain:

∞

∑
n=1

nanxn−1 + 2x
∞

∑
n=0

anxn = 0 (4)

which simplifies to

∞

∑
n=1

nanxn−1 +
∞

∑
n=0

2anxn+1 = 0 (5)

To add the two power series in 5, we add the coefficients of like powers of x. If we write out the first few
terms of these summations and add, we get

a1 + (2a2 + 2a0)x + (3a3 + 2a1)x2 + (4a4 + 2a2)x3 + ... = 0 (6)

So we can get the system of equations:
1By an ordinary point of a first-order equation y′+ q(x)y = 0, we mean a point where q(x) is analytic.
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a1 = 0, 2a2 + 2a0 = 0,
3a3 + 2a1 = 0, 4a4 + 2a2 = 0, etc.

(7)

Solving the preceding system, we find

a1 = 0, a2 = −a0, a3 = − 2
3 a1 = 0,

a4 = − 1
2 a2 = − 1

2(−a0) =
1
2 a0

(8)

Hence, the power series for the solution takes the form

y(x) = a0− a0x2 +
1
2

a0x4 + ..

Problem 2: Second order power sereies solution to ODE
From: AM105 P-Set 5 2013

Find the power series solution to the equation

d2y
dx2 +

3
x− 4

dy
dx

+ 4y = 0, (9)

starting from the initial condition y(0) = 3 and y′(0) = 0. Find the radius of convergence of the series.

Solution

We will use

y(x) =
∞

∑
n=0

anxn (10)

and substitute it into the original equation.
First, note that the coefficient function of dy

dx in (9) depends on x and therefore we must expand it in a power
series. Alternatively (and more simply) we can also multiply (9) through by x− 4 and then notice that in
the resulting equation

(x− 4)
d2y
dx2 + 3

dy
dx

+ (4x− 16)y = 0 (11)

all of the coefficients are power series (of the functions x− 4 and 4x− 16 around the point x = 0).
Now, we will use y(x) = ∑∞

n=0 anxn and substitute into our new equation (11). Taking derivatives of y(x) we
have

y′(x) =
∞

∑
n=1

annxn−1

y′′(x) =
∞

∑
n=2

ann(n− 1)xn−2

and substituting into (11) we get
∞

∑
n=2

ann(n− 1)xn−1− 4
∞

∑
n=2

ann(n− 1)xn−2 + (12)

3
∞

∑
n=1

annxn−1 + 4
∞

∑
n=0

anxn+1− 16
∞

∑
n=0

anxn = 0
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Using the appropriate substitutions, namely p = n− 2, m = n− 1 and q = n + 1 and defining a−1 = 0 we
can rewrite this as

∞

∑
m=1

am+1(m + 1)mxm− 4
∞

∑
p=0

ap+2(p + 2)(p + 1)xp + (13)

3
∞

∑
m=0

am+1(m + 1)xm + 4
∞

∑
q=0

aq−1xq− 16
∞

∑
n=0

anxn = 0

Finally, notice that the sum in the first term in (13) can have its lower index changed to m = 0 since when
m = 0 we have a1(1)(0)x0 = 0 and therefore

∞

∑
m=1

am+1(m + 1)mxm =
∞

∑
m=0

am+1(m + 1)mxm (14)

Since indices are just labels we can rewrite everything in terms of n to get
∞

∑
n=0

an+1(n + 1)nxn− 4
∞

∑
n=0

an+2(n + 2)(n + 1)xn + (15)

3
∞

∑
n=0

an+1(n + 1)xn + 4
∞

∑
n=0

an−1xn− 16
∞

∑
n=0

anxn = 0

Combining the sums we have
∞

∑
n=0

an+1(n + 1)nxn− 4an+2(n + 2)(n + 1)xn + 3an+1(n + 1)xn + 4an−1xn− 16anxn = 0 (16)

which implies, since the coefficients of xn for all n must be 0, that

an+1(n + 1)n− 4an+2(n + 2)(n + 1) + 3an+1(n + 1) + 4an−1− 16an = 0 (17)

Noticing that 3(n + 1) + (n + 1)n = (n + 1)(n + 3) we can rewrite the coefficient of an+1 to get

an+1(n + 1)(n + 3)− 4an+2(n + 2)(n + 1) + 4an−1− 16an = 0 (18)

and we can then solve for an+2 to get the recursion relation

an+2 =
(n + 3)

4(n + 2)
an+1 +

1
(n + 2)(n + 1)

an−1−
4

(n + 2)(n + 1)
an (19)

The initial conditions tell us that a0 = 3 and a1 = 0. Using these values of a0 and a1 and the recursion
relation (19) we can compute the first few terms of the series

a0 = 3
a1 = 0

a2 = −6

a3 = −3
2

a4 =
49
32

and so on and so forth. Therefore, y(x) is
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y(x) = 3− 6x2− 3
2

x3 +
49
32

x4 +
147
320

x5− 923
7680

x6... (20)

What about the radius of convergence of this series? First, notice that the power series (10) that we used is
an expansion around x0 = 0. Then notice that the coefficients of dy

dx and y in (9) can be expanded in Taylor
series about the point x0 = 0:

3
x− 4

≈ −3
4
− 3

(x− 4)2 x +
6

(x− 4)3
1
2!

+ ... (21)

and of course the Taylor series of 4 is simply 4.
Notice that 3

x−4 has a singularity at x = 4. Therefore we might expect that a Taylor series expansion of 3
x−4

about x0 = 0 doesn’t ’run into trouble’ until x = 4 and therefore the radius of convergence of this series is
R = 4. The Taylor series expansion for 4 has an infinite radius of convergence.
Finally, we might expect that the radius of convergence of our power series solution (20) is at least as great
as the smallest radius of convergence of the coefficient expansions and therefore we might estimate that
the radius of convergence is at least R = 4 for our solution (20).
We can see that R = 4 for (20) by using Theorem 4.2.2 of Greenberg. This theorem tells us that

R =
1

limn→∞ | an+1
an
|

(22)

for a power series. From (19) notice that

an+2 ≈
1
4

an+1 (23)

as n→ ∞ which also means an+1 ≈ 1
4 an as n→ ∞ and using the theorem we easily see that

R =
1

limn→∞ | an+1
an
|
=

1
1
4
= 4

Problem 3: Deriving Fourier series represetnation
From: AM105 P-Set 5 2013

Derive the fourier represetnation for
f (x) = x4 (24)

defined on 0 ≤ x ≤ 1.

Solution

f (x) = x4 on the interval 0 ≤ x ≤ 1 is not periodic. Therefore, how do we expand it in a fourier series? We
will follow the treatment in Greenberg 17.4, namely, we expand f (x) = x4 on the interval 0 ≤ x ≤ 1 to the
range−∞ ≤ x ≤ +∞ to define an extended function fext that is periodic and has fext = f (x) on 0 ≤ x ≤ 1
We can extend f (x) to−∞ ≤ x ≤ +∞ in a variety of ways, namely we have the half-range cosine extension
(HRC), half-range sine extension (HRS), quarter-range cosine extension(QRC) and the quarter-range sine
extension (QRS). You should read section 17.4 to understand the difference between these various extensions
and how they lead to the corresponding formulas for the fourier series.
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In any event, for our function f (x) = x4 let’s expand it in a HRC (you could also use a HRS, QRC, or QRS and
you would get different fourier coefficients) so that we have the corresponding fourier series representation

f (x) = a0 +
∞

∑
n=1

an cos(
nπx

L
) (25)

a0 =
1
L

∫ L

0
f (x)dx

an =
2
L

∫ L

0
f (x) cos(

nπx
L

)dx

where L corresponds to the endpoint of the interval, for our problem L = 1.
Using (25) we have

a0 =
1
1

∫ 1

0
x4dx =

x5

5

∣∣∣1
0
=

1
5

(26)

and using integration by parts to solve for the an we find that

an =
2
1

∫ 1

0
x4 cos(

nπx
1

)dx =
8 cos(nπ)

(nπ)2 − 48 cos(nπ)

(nπ)4 (27)

thus one possible fourier series approximation to f (x) = x4 is

x4 ≈ 1
5
+

∞

∑
n=1

(
8 cos(nπ)

(nπ)2 − 48 cos(nπ)

(nπ)4

)
cos(nπx)
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Using Half range sine expansion

 

 

Half range Sine Series Approx using N=1000

x
4

Figure 1: Figure showing different truncations of the series approximation. As you can see, the more n
we use, the better the approximation to f (x) = x4. Furthermore, the right bottom graph shows what the
approximation would look like if we used a half range sine expansion instead of the half range cosine
expansion.
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Matlab file for half range graph

1 clc
2 close all
3 clear all
4

5 bn = @(n) 2*(4*(pi*n*(pi^2*n^2-6)*sin(n*pi)+6)-(pi^4*n^4-12*pi^2*n^2+24)*cos(pi*n))/(pi^5*n^5);
6 x=-1.5:0.001:1.5;
7 f=zeros(1,length(x));
8 fanaly=x.^4;
9 for n=1:1000

10 f=f+bn(n)*sin(n*pi.*x);
11 end
12

13 plot(x,f,'linewidth',3); hold on
14 plot(x,fanaly,'--r')
15 legend('Half range Sine Series Approx using N=1000','x^4')
16 title('Using Half range sine expansion')
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