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Mechanics of Biologically Inspired Structures and Flexible
Mechanical Metamaterials

In this dissertation, I focus on exploring biologically inspired structures and the mechanics of

flexible porous metamaterials by utilizing both experimental and computational methods.

For the biologically inspired structures portion of this dissertation, namely chapters 2 and 3, I

focus on the architectural details of the glassy skeletal system from the hexactinellid sponge, Eu-

plectella aspergillum. In chapter 2, I show that this sponge’s meso-scale skeletal system, consisting

of a square-grid-like lattice architecture overlaid with a double set of crossed diagonal bracings,

exhibits the highest buckling resistance for a given amount of material when compared to related

lattice structures. These findings are further confirmed thorough an evolutionary optimization al-

gorithm, through which I demonstrate that the sponge-inspired lattice geometry occurs near the

design space’s optimum material distribution.

At another level of structural hierarchy, in chapter 3 I show that its complex maze-like organi-

zation of helical ridges that surround its main skeletal tube, not only provide additional mechanical

reinforcement, but perhaps more significantly, deliver a critical hydrodynamic benefit by effec-

tively suppressing von Kármán vortex shedding and reducing fluctuations in lift forcing over a

wide range of biologically relevant flow regimes. By comparing the disordered sponge ridge ge-

ometry to other more symmetrical strake-based vortex suppression systems commonly employed

in engineering contexts ranging from antennas to underwater gas and oil pipelines, I find that the

unique maze-like ridge organization of the sponge can completely suppress vortex shedding rather

iii

http://mcfernandes.com


than delaying the shedding to a more downstream location. These findings highlight the sponge

ridge design’s potential benefit in engineering applications.

Lastly, in chapter 4, I utilize similar experimental and computational methods to study the

response of porous mechanical metamaterials with well-defined periodicity for their ability to ex-

hibit complex behavior as a result of their non-linear deformation. Although it is well known

that buckling-induced planar transformations occur in 2D porous metamaterials, here I explore

the emergence of 3D morphologies triggered by mechanical instabilities in an elastomeric block

with tilted cylindrical holes. I demonstrate that the 3D deformation of these structures can be

leveraged to tune surface properties including friction and light reflection, thus providing a new

experimental platform for investigating deformation-dependent dynamics for tribological and op-

tical applications.
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Listing of figures

1.1 Microscope images of a burr seed, and a ‘velours and crochet’ (VELCRO ©).
Inspired by the micro-structure of burr seeds as seen in (a) (Image Source) , velours
and crochet technology use microscopic hooks and loops to attach two surfaces
together as seen in (b) (Image Source) . [1] . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Honeycomb structure and applications. (a) Shows picture of honeycomb created
by worker bees out of beeswax (Image Source) . (b) Picture of a cross-section outer
shell airplane wing (fuel tank removed) illustrating use of honeycomb as part of
its structure (Image Source) . (c) Ceramic substrate illustrating the implementation
of honeycomb structures (Image Source) (smaller image shows where substrate is
placed within catalytic converter. (Image Source) ) . . . . . . . . . . . . . . . . . . 3

1.3 Structures of bones and trusses of cellular metals. (a) Hollow humerus bone
from a Cape vulture’s (Gyps coprotheres) distal end. The structure is stiffened by
V-shaped internal struts in a three-dimensional configuration (Image Source) . [1,2]
(b) CAD image of the truss core structure. The multifunctional cellular metals have
a structure similar to that of the bone of birds (Image Source) . [2,3] . . . . . . . . . . 4

1.4 Euplectella aspergillum skeletal structure. Photographic image of a cleaned sponge
specimen showing the full skeletal structure along with a dried pair of shrimps
(faded orange region in middle left region of sponge). A side note: when living,
the sponge also contains a pair of live shrimps that often permanently inhabit the
sponge once they grow too big to leave it. These occupants have earned the sponge
the status of a symbol of eternal love in Japan, where it is typically given as a wed-
ding present. [4,5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Mechanical metamaterials. This figure shows a select few different types of me-
chanical metamaterials. (a) Shows a multi-stable mechanical metamaterial that has
been partially compressed.(Image Source) (b) Shows a programmable mechanical
metamaterial that is being actuated with hands.(Image Source) (c) Shows a select
number of building blocks used to create origami-inspired metamaterials.(Image
Source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Representative skeletal systemof the hexactinellid spongeEuplectella aspergillum.
(a-c) Progressively magnified views of the sponge’s skeletal system. (d) Composite
overlay of the idealized truss model (green and blue lines) and the sponge’s underly-
ing skeletal structure. (e) Schematic of our sponge-inspired lattice with rectangular
cross-section (Design A) comprising non-diagonal elements with length L and thick-
ness TA,nd and diagonal elements with thickness TA,d located at a distance S from the
nodes. Scale bars: (a) 4 cm; (b) 2 cm; (c) 2.5 mm. . . . . . . . . . . . . . . . . . . . 14
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2.2 Experimental and numerical results. (a)-(d) Schematics of the different lattice
geometries (Design A-D) considered in this study. (e) Mechanical deformation
snapshots of the different 3D-printed models at 0% applied strain (top row) and
6% applied strain (bottom row). Scale bar: 3 cm. (f) Numerical (dashed lines)
and experimental (solid lines) stress-strain curves for n = independently tested
samples of each design. Curves in this plot are color coded according to (a)-(d).
All designs are characterized by the same total volume and mass ratio allocation
between non-diagonals and diagonal elements. . . . . . . . . . . . . . . . . . . . . . 17

2.3 Numerical results describing structural response to varying loading angle. (a)
Evolution of the structural stiffness for infinite size periodic lattice designs as a
function of loading angle θ. (b) Critical buckling modes for Design A-D at θ = ◦.
(c) Evolution of the effective buckling stress for the different lattice designs as a
function of loading angle θ. Results are obtained by simulating a super-cell with 10
by 10 unit and periodic boundary conditions. (d) Evolution of the effective buckling
stress as a function of the loading angle θ for finite (non-periodic) lattice structures
comprising 10 by 10 unit cells. In each plot, the line color corresponds to the designs
by color in (b). All designs are characterized by the same total volume and mass
ratio allocation between non-diagonal and diagonal elements. . . . . . . . . . . . . . 19

2.4 Optimization results and experimental validation. (a) Optimal value of critical
buckling load for varying number of diagonals. The color of each point represents
the optimal mass ratio λ. (b) numerical (dashed lines) and experimental (solid lines)
stress-strain curves for n = independently tested samples of Design A and the
optimal design. (c) Experimental snapshots of the optimal design at 0% applied
strain (top figure) and 6% applied strain (bottom figure). Scale bar: 3 cm. . . . . . . 22

2.5 Numerical and experimental results of slender structures undergoing 3-point
bending tests. (a) Experimental snapshots of the four lattices comprising 11×2
square cells when loaded in 3-point bending at δappl/L = . . Scale bar: 3 cm. (b)
Evolution of n = experimentally obtained samples (continuous lines) and numer-
ically (dashed lines) recorded reaction forces for the four designs as a function of
the applied displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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3.1 Skeletal features ofEuplectella aspergillum. (a) Photograph of a cleaned and dried
siliceous skeleton of E. aspergillum, clearly depicting its tapered tubular form, its
highly regular diagonally reinforced checkerboard-like square lattice structure, and
its complex network of external ridges. (b) Unrolled ridge diagram illustrating the
location of ridge elements in relation to the checkerboard-like lattice system. Filled
squares denote the presence, and white squares denote the absence of ridge ele-
ments. Red squares denote clockwise ridge elements, blue squares denote counter-
clockwise ridge elements, and purple squares denote corner elements (which do not
count toward the number of either clockwise or counter-clockwise elements). (c)
Bar plot showing the mean occupancy fraction for ridge elements (n=10 from fig-
ure B.7). Data presented are averages, and error bars represent +/- one standard
deviation. The purple bar shows the total ridge occupancy fraction, which includes
all clockwise (red bar), counter-clockwise (blue bar), and corner elements. (d) Plot
adapted fromWeaver et al. [6], which illustrates that the combination of a decreasing
volume per unit area for the underlying diagonally reinforced square lattice (orange)
with an increasing ridge height (green) along the length of the tapered tube, results
in a relatively consistent total material volume of silica per unit area throughout the
entire skeletal system (black dotted line). For the orange and green data, the solid
lines denote averages and the shaded regions denote +/- one standard deviation for
n=10 specimens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Workflow for the generation of sponge structural models. (a) Schematics show-
ing the underlying diagonally reinforced square unit-cell geometry, which was tiled
to produce the tubular lattice shown in (b). (c) Schematics showing the different
ridge elements used to construct the complete skeletal model. Each component is
color-coded in the left map, indicating its location. The dotted lines in each of the
four 3D models correspond to the main ridge supporting elements, the brightly col-
ored dots denote nodes of fusion between the struts, and the black arrows denote
the direction of ridge elongation. To construct the complete ridge system for each
tested sponge geometry (as shown in (d)), each of these four elements could be ei-
ther translated, rotated, or mirrored (with the exception of the Bidirecitonal design
which requires an additional crossing element). . . . . . . . . . . . . . . . . . . . . 33

3.3 Fully constructed skeletal models for structural and hydrodynamic analyses.
Schematics showing (a) the baseline cylinder (containing no ridges), (b) the Unidi-
rectional ridge design, (c) the Bidirectional ridge design, and (d) one representative
example of the Sponge ridge design. For each ridge geometry, we also considered
four variations of the inner tube (left to right): a solid (nonporous) tube, a low-
porosity tube (matching the porosity of the living sponge), a high-porosity tube
(matching the porosity of only the skeleton), and that of only the load-bearing skele-
tal elements of a sponge. CFD simulations were conducted on the first three tube
geometries (solid, low-porosity, and high-porosity geometries) and FE simulations
were conducted on the last geometry (load-bearing skeletal elements). . . . . . . . . 36
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3.4 Hydrodynamic model generation workflow. (a) Schematics showing one of the
ten sponge ridge diagrams that provided a road map for the construction of a com-
plete ridge network (b). The apex of the triangular ridges (blue) cross diagonally
through the squares in (a) and their flat sides contact the underlying cylinder (gray)
at the geometric centers (denoted by red dots) of the octagonal openings shown
in figure 3.2(a). (c) Schematics showing a cross-sectional view of the non-porous
cylindrical core (gray) with the labeled radius encompassing the ridge height Rr. (d)
Schematics showing the cylinder thickness parameters, with Ro and Ri denoting the
outer and inner radii, respectively. For (c) and (d), the vertical black dotted lines
denote the model’s neutral axis. (e) Schematics showing the complete non-porous
baseline ridge geometry, which was generated from the map shown in (a). High
(f) and low (g) magnification views, showing the geometries of the octagonal holes
(red) for the small pores containing a side length of So ≈ . L, which approximates
the porosity of a living sponge. High (h) and low (i) magnification views, show-
ing the geometries of the octagonal holes (red) for the large pores containing a side
length of So ≈ . L, which approximates the porosity of only the sponge’s glassy
skeletal system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Structural Analysis. (a) Schematics illustrating boundary conditions considered
in the FE simulations. For all considered loading conditions, the displacement at
the bottom was held fixed, namely ux = uy = uz = , and a displacement δappl
(indicated with arrows) was applied. (b)-(c) Bar plots showing normalized stiffness
RF/(δapplLEmat) and normalized critical buckling force Fcr/(L Emat) with different
colors corresponding to each loading condition. Themodels consideredwere the ten
mapped Sponge geometries (see figure B.7), the Unidirectional and Bidirectional
geometries, the Ridge-Free design, and the Reallocated Ridge Mass design, from
left to right respectively. For the the Reallocated Ridge Mass design, we employed
the Ridge-Free design, but reallocated the volume from the ridges into the cylinder
elements, thus making each element thicker and more robust. . . . . . . . . . . . . . 40

3.6 Hydrodynamic results for non-porous cylindrical geometries. (a) Plot showing
transient lift coefficient Cl for the different non-porous geometries. (b) Magnified
view of transient lift coefficients, showing the initial shedding behavior for differ-
ent non-porous geometries. (c) Plot showing power spectral density (PSD) as a
function of Strouhal number for different ridge-containing geometries. The verti-
cal dashed black line shows the empirical Strouhal number for a smooth cylinder
using a Re = flow regime. Note that the last 20 seconds of the transient data
(when the flow reaches a periodic state) were used to compute the PSD. (d) Plot
showing transient drag coefficient Cd for the different ridge-containing geometries.
The horizontal black dashed line corresponds to empirical drag coefficient data for
a smooth cylinder using Re = flow regime. (e) Vorticity fields illustrating
shedding for the different non-porous geometries. . . . . . . . . . . . . . . . . . . . 42

3.7 PSD for additional sponge geometries. PSD plot comparing the different consid-
ered structures to additional sponge ridge designs obtained from real sponge sam-
ples (see figure B.7). Results are presented for Re = , . . . . . . . . . . . . . . . 43
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3.8 Hydrodynamic results for cylindrical geometries exhibiting biologically rele-
vant (small) porosities inspired by the anatomy of living specimens. (a) Plot
showing transient lift coefficient Cl for the different porous geometries. (b) Mag-
nified view of transient lift coefficients, showing the initial shedding behavior for
different non-porous geometries. (c) Plot showing power spectral density (PSD) as
a function of Strouhal number for different ridge-containing geometries. Note that
the last 20 seconds of the transient data (when the flow reaches a periodic state)
were used to compute the PSD. (d) Plot showing transient drag coefficient Cd for
the different ridge-containing geometries. (e) Vorticity fields illustrating shedding
for the different different non-porous geometries. . . . . . . . . . . . . . . . . . . . . 44

3.9 Hydrodynamics results for Re = , and Re = , low-porosity cylinder
baseline and sponge. (a) Plot showing transient lift coefficient Cl as a function of
time at Re = , . (b) PSD plot showing density with frequency converted to
Strouhal number. Note that the last 10 seconds of the transient data were used to
compute the PSD at Re = , . (c) Plot showing transient drag coefficient Cd as
a function of time at Re = , . (d) Plot showing transient lift coefficient Cl as a
function of time at Re = , . (e) PSD plot showing density with frequency
converted to Strouhal number at Re = , . Note that the last 5 seconds of
the transient data were used to compute the PSD. (f) Plot showing transient drag
coefficient Cd as a function of time at Re = , . . . . . . . . . . . . . . . . . . . . 45

3.10 Hydrodynamic results for cylindrical geometries exhibiting biologically rele-
vant (large) porosities reflecting the skeletal anatomy of specimens. (a) Plot
showing transient lift coefficient Cl for the different porous geometries. (b) Mag-
nified view of transient lift coefficients, showing the initial shedding behavior for
different non-porous geometries. (c) Plot showing power spectral density (PSD) as
a function of Strouhal number for different ridge-containing geometries. Note that
the last 20 seconds of the transient data (when the flow reaches a periodic state)
were used to compute the PSD. (d) Plot showing transient drag coefficient Cd for
the different ridge-containing geometries. (e) Vorticity fields illustrating shedding
for the different different non-porous geometries. . . . . . . . . . . . . . . . . . . . . 46

3.11 Quantification of flow rate through the different investigated geometries. (a)
Bar plot showing time-averaged flow rate through the wall of the low-porosity tubu-
lar structures for Re = , . (b) Bar plot showing time-averaged flow rate through
the wall of the high-porosity tubular structure for Re = , . (c) Bar plot showing
time-averaged flow rate through the wall of the low-porosity tubular structure for
Re = , . (d) Bar plot showing time-averaged flow rate through the wall of the
low-porosity tubular structure for Re = , . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Conceptual visualization and buckling-induced geometric transformations in
our inclined metamaterial. (a) Shown in light green, this structure is derived from
conceptually slicing a block (shown in gray), containing a square array of cylindrical
holes, at an angle θ. (b)-(c) pre- and post-buckling photos of the metamaterial at (b)
ΔV/V = and at (c) ΔV/V = − configurations for samples with θ = ◦ (left) and
θ = ◦ (right). Both top and side views are shown. Additional information on this
figure can be found in Supplementary Video 1. . . . . . . . . . . . . . . . . . . . . . 58
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4.2 Experimental characterization of out-of-planemetamaterial buckling. (a) Pressure-
volume relationship for the four different θ’s considered (θ= ◦, ◦, ◦, ◦). Each
sample was tested independently three times and the results from each test are re-
ported as separate lines. (b) Normalized out-of-plane deformation measurements
of the samples, obtained from 3D surface scans. The inset specifies the four re-
gions (denoted by white boxes) used for measuring δ. Additional information on
this figure can be found in Supplementary Video 2. . . . . . . . . . . . . . . . . . . . 60

4.3 Buckling-induced tunable light reflection. (a) Photograph of the experimental
setup outlining the sample location, light source, and pattern collection screen. (b)
Evolution of the measured directional reflectance RΩ (normalized by max(RΩ)) as
a function of ΔV/V for samples with θ = ◦ and θ = ◦. (c) Snapshots obtained
during the deflation process for the θ = ◦ (left column) and θ = ◦ (right column)
samples at ΔV/V = (top row) and ΔV/V = − (bottom row). (d) Ray tracing
simulations showing the directionality of light reflection for θ = ◦ (left column)
and θ = ◦ (right column) samples at ΔV/V = (top row) and ΔV/V = − (bottom
row). For reference, the initial periodic reflected light pattern is due to small surface
depressions in the non-evacuated structure. Additional information on this figure
can be found in Supplementary Video 3. . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Frictional measurements for our inclined metamaterial. (a) Photographs show-
ing the bottom surface at the ΔV/V = (top row) and ΔV/V = − (bottom row)
states of samples with (from left to right): (i) θ = ◦ and no acrylic features; (ii)
θ = ◦ and acrylic spheres; (iii) θ = ◦ and acrylic spheres; (iv) θ = ◦ and acrylic
plates. (b) Photographs qualitatively showing the effect of the buckling-induced
morphology on the tilting angle for which the sample began to slide, ϕcr. (c) Coef-
ficient of friction for the different samples as a function of ΔV/V . See figures C.8
to C.10 for additional information and results. Additional information on this figure
can be found in Supplementary Video 4. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Design elements and performance of our soft robotic crawler. (a) Photograph
showing the bottom of the soft robotic crawler. (b) Displacement of the center of
mass of the first module of the crawler,u, normalized by the initial length of the
crawler, Lrobot, (blue line) and source pressure, Psource, (magenta line) versus time
during a cycle. The center of mass provides information on the average displace-
ment of the first module of the robot, which is obtained by averaging the displace-
ment of both edge points for each frame. (c) Experimental snapshots of our soft
crawler at t= (i) 0, (ii) 1.5, (iii) 9.5, (iv) 11 and (v) 20 s. The distance traveled during
one full motion cycle (between T and T ) in indicated by the locations of the two
red dotted lines. Additional information on this figure can be found in Supplemen-
tary Video 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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4.6 Out-of-plane buckling behaviors for different hole patterns. Post-buckling fi-
nite element results for three hole arrangements with θ = ◦ at ΔV/V = − . For
the triangular, rhombitrihexagonal, and trihexagonal holes arrays (the undeformed
geometry is shown in the insets), we illustrate the normalized out-of-plane displace-
ment, uz/Rh. (b) Normalized out-of-plane deformationmeasurements obtained from
Finite Element simulations at ΔV/V = − for the triangular, rhombitrihexagonal,
and trihexagonal geometries, and the square arrangement from figure 4.1. Addi-
tional information on this figure can be found in Supplementary Video 6. . . . . . . 70
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deflection δ is applied to the top center of the structure while the bottom outside
corners have constrained deflections, but unconstrained rotation. The normalized
reaction force is plotted as a function of the δ for the four considered designs. More-
over, on the right we show numerical snapshots of the four designs for δ/L = . .
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A.23Effect of disorder on critical stress. To evaluate the influence of disorder on the
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√
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√

). (a)
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C.1 Design elements of our inclined metamaterial. (a) Shows the inclined cut of our
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1.1 Biomimetics and Structural Engineering

Nature has always served as a model for mimicking and as inspiration for humans in their desire to

improve their lives. By adapting mechanisms and capabilities from nature, scientific approaches

have helped humans understand related phenomena and associated principles in order to engineer

novel devices and improve their capability. [10] The ancient and inextricable tie between nature and

engineering is clearly evident in the field of material science, starting with the use of stone, bones,

antler, wood, and skin. [1] Nearly since then, humans have made large advances in material science

and engineering, many of which have occurred thanks to inspiration from nature and biology.

One of these advancements is evident in the development of the multi-billion-dollar velours

and crochet (also known by its trademark VELCRO ©) as seen in figure 1.1. Its inventor, elec-

trical engineer George de Mestral, worked in-tandem with nature and took inspiration from the

structure of seed-bearing burr after being stuck with a plethora of burrs and having to remove them

one by one. [1,11] Another such example of in-tandem biological inspiration can be found in the

honeycomb structure – inspired by the honeycomb from honey bees (figure 1.2(a)) – which is a

Figure 1.1:Microscope images of a burr seed, and a ‘velours and crochet’ (VELCRO ©). Inspired by
themicro-structure of burr seeds as seen in (a) (Image Source) , velours and crochet technology usemicroscopic
hooks and loops to attach two surfaces together as seen in (b) (Image Source) . [1]
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Figure 1.2:Honeycomb structure and applications. (a) Shows picture of honeycomb created byworker
bees out of beeswax (Image Source) . (b) Picture of a cross-section outer shell airplane wing (fuel tank removed)
illustrating use of honeycomb as part of its structure (Image Source) . (c) Ceramic substrate illustrating the im-
plementation of honeycomb structures (Image Source) (smaller image showswhere substrate is placedwithin
catalytic converter. (Image Source) )

hollow structure that minimizes the amount of material used while providing relatively high out-

of-plane compression and shear properties. [12] Man-made honeycomb structures are found in a

variety of everyday applications [13] ranging from the aluminum wings of an aircraft (figure 1.2(b))

to paper-based honeycomb cardboard boxes used as packaging materials. Furthermore, apart from

its structural rigidity, honeycomb also serves as a key component in applications such as catalytic

converters (typically found at the exhaust of internal combustion engines), where it provides a large

surface area to catalyze harmful exhaust gases into less-toxic pollutants (figure 1.2(a)). [14]

Likewise, many advancements in material science and structural mechanics occur in-parallel

to nature and biology, where humans intuitively and mathematically find solutions to complex

engineering problems for which the same solutions oftentimes can be found in natural settings.

One such example is the structures found in birds which are optimized for weight while providing

strength. [15] The hollow bone of a vulture, for instance, is strengthened by V-shaped struts com-

posed of layers connected by a tri-dimensional array of inclined struts, as seen in figure 1.3(a). [1,15]

This structure provides the stiffness required by minimizing the weight, since most of the mass is
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displaced away from the neutral plane. [1] Interestingly, researchers are developing very similar

structures [3], as shown in figure 1.3(b), where multi-functional periodic cellular metals, referred

to as lattice materials, have a structure similar to that of the bone of birds and are developed us-

ing topological strategies aimed at reducing material usage and weight. [3,16,17] Remarkably, this is

a clear example of modern research finding solutions that have existed in biological systems for

millions of years.

Figure 1.3: Structures of bones and trusses of cellular metals. (a) Hollow humerus bone from a Cape vul-
ture’s (Gyps coprotheres) distal end. The structure is stiffened by V-shaped internal struts in a three-dimensional
configuration (Image Source) . [1,2] (b) CAD image of the truss core structure. Themultifunctional cellular metals
have a structure similar to that of the bone of birds (Image Source) . [2,3]

Additional examples of structural resistance can be found throughout the natural world, espe-

cially in the deepest parts of the ocean, where tough conditions can lead organisms to develop

functional properties with interesting biomimetic potential. [18] In the depths of the western Pacific

Ocean, we find structural efficiency in a different fashion, particularly in the form of structural

buckling resistance, where geometrical design plays a key role in the function of structural stabil-

ity. The skeleton of a deep-sea glass sponge, Euplectella aspergillum, exhibits amazing hierarchi-

cal levels of structural and geometrical complexity [6], each providing the essential components of

structural design necessary for the conversion of the otherwise brittle constituent material (silica

glass) into a sophisticated masterpiece of architectural evolution. [19] This structure has been stud-
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ied by scholars across multiple disciplines to expose some of the engineering lessons that have

stood the test of time over millions of years.

In this dissertation I present my six years contributing to the advancement and development

of structural material science by working both in-tandem and in-parallel with nature and biology,

taking inspiration from glass sponges and porous mechanical metamaterial structures.

1.2 Glass Sponges

Figure 1.4: Euplectella aspergillum skeletal structure. Photographic image of a cleaned sponge specimen
showing the full skeletal structure along with a dried pair of shrimps (faded orange region inmiddle left region
of sponge). A side note: when living, the sponge also contains a pair of live shrimps that often permanently in-
habit the sponge once they grow too big to leave it. These occupants have earned the sponge the status of a
symbol of eternal love in Japan, where it is typically given as a wedding present. [4,5]
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In 1841, the English biologist Richard Owen marveled at the intricate skeleton of a new sea sponge

species found near the Philippines. [20] It resembled “a delicate cornucopia,” he wrote, one woven

from “stiff, glistening, elastic threads, resembling the finest hairs of spun glass.” [21] The skeleton

is indeed made of glass, which the animal, Euplectella aspergillum— nicknamed “Venus’ flower

basket,” — creates from raw materials extracted from the surrounding seawater. Hexactinellid

glass sponges (the group to which Venus’ flower basket belongs) can be incredibly long-lived —

some are thought to live many thousands of years, placing them among the longest-lived animals

— and the thin glassy fibers that make up their skeletons can even possess the ability to channel

light, in a manner similar to that seen in man-made fiber optics. [4,5,19]

This intricate design of its glass skeleton is what inspired us to seek understanding of its func-

tional significance. In chapter 2 of this dissertation, our work reveals that the skeleton is surpris-

ingly strong considering the amount of material used in its construction. The skeleton’s strength

derives from its peculiar lattice pattern, whose periodic architecture is neither intuitive nor simple.

The glass beams that form the skeleton of the Venus’ flower basket, however, have a lot in common

with trusses, the assemblages of beams used to stabilize bridges and skyscrapers. For well over a

century, engineers’ preferred design for trusses has been a sturdy lattice consisting of a square grid

with diagonals running in both directions for added support. The skeleton of the Venus’ flower

basket, however, has pairs of diagonals running in both directions rather than the single diagonals

crisscrossing a typical truss. These pairs are spaced apart so the grid looks like a checkerboard,

with diagonals crossing every other square. [6]

In our work, we fabricated and computer-simulated a lattice structure resembling the sponge

and compared it with other lattice structures of the same weight, including standard engineering

truss patterns. In experiments as well as simulations we saw that the bio-inspired lattice withstands
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the greatest load – first from compression in one direction, and then in a three-point bending test –

before yielding. In further simulations, we varied the number of diagonals as well as their spacing

and thickness to find the lattice that could sustain the most compression. It turned out that the

optimum, given the constraints, closely follows the sponge-inspired design.

Exhibiting a high strength-to-weight ratio is not all that Venus’ flower basket offers. The cylin-

drical lattice walls of its skeleton are just one of several levels of complexity in its structure. Zoom

out from the diagonally reinforced structure and we see a macro-scale anatomy composed of yet an-

other lattice formation, creating a series of right- and left-handed helical ridges, which are oriented

perpendicular to the surface of the skeletal tube. Each unique design forms a maze-like organi-

zational structure, one example of which can be seen in figure 1.4. These formations have been

conjectured in previous studies [6] to provide another layer of mechanical benefit to the sponge, as

has been demonstrated for other reinforcing axial and helical rib-like elements found in tubular

structures. [22–24] In chapter 3 of this dissertation, we dive deep into the mechanics and functional

significance of these unique ridge formations and explore not only their mechanical function, but

also how this structure affects the fluid flow pattern around the sponge.
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1.3 Mechanical Metamaterials

Figure 1.5:Mechanical metamaterials. This figure shows a select few different types of mechanical metama-
terials. (a) Shows amulti-stable mechanical metamaterial that has been partially compressed.(Image Source) (b)
Shows a programmablemechanical metamaterial that is being actuated with hands.(Image Source) (c) Shows a
select number of building blocks used to create origami-inspiredmetamaterials.(Image Source)

Porous structural materials with well-defined periodicity are ubiquitous not only in nature but also

in synthetic structures and devices. These types of materials have proven to offer various types

of auxetic behavior, ranging from negative Poisson’s ratio [25–35] to high energy absorption [29,36]

and excellent acoustic damping [37,38]. Mechanical metamaterials, which constitute a more recent

branch of metamaterials [39], borrow ideas fromwave-based metamaterials to achieve shape morph-

ing [40–56], topological protections [37,57–80], instabilities, and non-linear responses [81–93] to obtain

unexpected functionalities, as seen in figure 1.5.

The simplest example of such a metamaterial is a buckling-based square array of circular holes

embedded in an elastomeric sheet [39] (as illustrated in figure 1.5(b)), which can be decomposed into

an array of rigid domains connected by beams. When the structure is uni-axially compressed, the

buckling of the beam-like ligaments triggers a sudden transformation of the holes into a periodic

pattern of alternating and mutually orthogonal ellipses. Thus, this type of metamaterial combines
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the shape-morphing properties of the underlyingmechanism of hinged squares with the mechanical

functionality of the beam elements that connect them.

One crucial observation for the vast field of shape-morphing porous mechanical metamateri-

als is that their deformation has historically remained planar and characterized by 2D morpholo-

gies [25–31]. However, in chapter 4, we introduce a new way to parameterize these structures to

achieve a 3D deformation pattern induced on the surface of the planar structure. In this chapter,

not only do we characterize this corrugation pattern, but we also utilize it to control light scattering

and friction, while also creating a crawling robot.

1.4 Dissertation Structure and Overview

Chapters 2 to 4 form the core of this dissertation, and each chapter is based on a first-author article

published in or submitted to a peer-reviewed journal. The core of the dissertation is subdivided

into two themes: 1. working in-tandemwith nature and biology (chapters 2 and 3); and 2. working

in-parallel with nature and biology (chapter 4).

First, chapter 2 illustrates the power of seeking inspiration from nature to devise innovative

solutions in a field that has remained, to a great extent, stagnant for hundreds of years. Diagonally

reinforced lattice truss structures were first patented in the 1820’s by Connecticut architect Ithiel

Town [94,95], who created covered bridges that utilized his technology for strength while remaining

light-weight. Since then, few iterations were made to the original design, marginally improving its

strength and functionality. This chapter explores design principles learned from the glass sponge

Euplectella aspergillum to improve diagonally reinforced lattices by leveraging the use of rapid

prototyping, such as 3D-printing, as well as finite element modeling. Here, we construct and
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test various lattice designs, including those inspired by the sponge, for their ability to withstand

structural buckling in various loading conditions. We demonstrate that by rearranging diagonal

reinforcement elements within a periodic square lattice, as observed in the skeletal system of the

sponge, we can create a structure capable of withstanding ∼25% higher buckling loads over ex-

isting commonly used designs – all while using the same amount of material. Furthermore, by

utilizing an evolutionary optimization algorithm, we show that our sponge-inspired truss structure

is extremely close to the optimal configuration within the design space.

Chapter 3 expands the sponge analysis to another length scale by studying the macro-scale

skeletal organization including its system of ridges that is overlaid on its truss design. Combining

finite element analysis and computational fluid dynamics, we study the functional significance

of its unique and regular ridge design. From these investigations, we discover that not only do

these ridges provide additional mechanical reinforcement, but, more significantly, they provide a

critical hydrodynamic benefit by effectively suppressing vonKármán vortex shedding and reducing

fluctuations in lift forcing over a wide range of flow regimes. The significance of these biological

results directly translates to engineering applications, where vortex-induced vibrations can excite

structural resonances with the potential to lead a structure to catastrophic collapse or permanent

damage. To explore this application, we compare the sponge-inspired ridge design to commonly

employed helical strakes used to suppress shedding.

Finally, in chapter 4 we do not seek inspiration from biology, but instead follow a research path

in-parallel with nature, by focusing on porous metamaterials with well-defined periodicity. These

materials have proven to show a wide range of behaviors, from negative Poisson’s ratio to high

energy absorption and acoustic controls. However, existing studies have harnessed the power of

these materials by simply using their 2D morphologies. In this chapter, we describe and quantify
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the emergence of 3D morphologies triggered by mechanical instabilities. To illustrate how the

various 3D patterns can be utilized in practical applications, we create prototypes that harnesses

their corrugation properties to separately control both friction and light. Using a modular approach,

we showcase a soft robot that is able to utilize friction control properties to induce locomotion

through the utilization of a single vacuum input.

As stated previously, this dissertation contains only chapters with major contributions (i.e.,

first-author publications); however, details on additional contributions (i.e., non-first-author publi-

cations) can be found in chapter 5. Furthermore, additional details, in the form of supplementary

information for chapters 2 to 4, can be found in the latter appendix chapters. Lastly, a complete

list of contributions can be found in the ‘List of Publications/Patents’ section at the end of the

dissertation.
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2.1 Abstract

The predominantly deep-sea hexactinellid sponges are known for their ability to construct remark-

ably complex skeletons from amorphous hydrated silica. The skeletal system from one such ex-

ample, Euplectella aspergillum, consists of a square-grid-like architecture overlaid with a double

set of diagonal bracings, creating a checkerboard-like pattern of open and closed cells. Here, us-

ing a combination of finite element simulations and mechanical tests on 3D-printed specimens of

different lattice geometries, we show that the sponge’s diagonal reinforcement strategy achieves

the highest buckling resistance for a given amount of material. Furthermore, using an evolutionary

optimization algorithm, we show that our sponge-inspired lattice geometry occurs near the design

space’s material distribution optimum. Our results demonstrate that lessons learned from the study

of sponge skeletal systems can be exploited for the realization of square lattice geometries that

are geometrically optimized to avoid global structural buckling, with implications for improved

material use in modern infrastructural applications.

2.2 Introduction

The mineralized skeletal system of the hexactinellid sponge, Euplectella aspergillum, commonly

known as Venus’ Flower Basket, has received significant attention from the engineering and mate-

rials science communities for its remarkable hierarchical architecture and mechanical robustness

across multiple length scales. Its constituent glassy skeletal elements (spicules) consist of a central

proteinaceous core surrounded by alternating concentric layers of consolidated silica nanoparticles

and thin organic interlayers. [18,20,96] These spicules are further organized to form a highly regular
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square grid, reinforced by two intersecting sets of paired diagonal struts, creating a checkerboard-

like pattern of alternating open and closed cells (figure 2.1). While the effects of the spicules’

laminated architecture in retarding crack propagation [97] and increasing buckling strength [98] have

been demonstrated previously, the potential mechanical benefits imposed by the double diagonal

square lattice created from the assembly of these constituent spicules remains largely unexplored.

Figure 2.1: Representative skeletal system of the hexactinellid sponge Euplectella aspergillum. (a-c) Progres-
sively magnified views of the sponge’s skeletal system. (d) Composite overlay of the idealized truss model (green
and blue lines) and the sponge’s underlying skeletal structure. (e) Schematic of our sponge-inspired lattice with
rectangular cross-section (Design A) comprising non-diagonal elements with length L and thickness TA,nd and di-
agonal elements with thickness TA,d located at a distance S from the nodes. Scale bars: (a) 4 cm; (b) 2 cm; (c) 2.5
mm.

Grid-like, open-cell lattices, such as those found in the skeletal system of E. aspergillum are

commonly employed in engineering contexts, owing to their reduced weight [99,100], high energy

absorption [3], and ability to control the propagation of acoustic [101] and thermal waves [13,17,102].

Generally, the properties and functionality of such geometries are dictated by their node connec-
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tivity. For example, a minimum node connectivity of 6 is required for 2D lattices to be stretching-

dominated, and therefore achieving a higher strength-to-weight ratio for structural applications [103].

In contrast, lattices with simple square geometries (node connectivity of 4), are unstable when the

loading vector has a transverse component (they are bending-dominated, and the only shear resis-

tance arises from the joints) [104], and typically require diagonal bracing for stabilization. [105]

In this paper, we use the skeletal anatomy of E. aspergillum as inspiration for the design of

mechanically robust square lattice architectures (more information on the sponge skeletal structure

can be found in section A.1 and figure A.1). First, we use a combination of experimental and

numerical analyses to investigate the mechanical properties of the sponge’s skeletal lattice. We

then employ an optimization algorithm to identify the beam configuration in a diagonally reinforced

square lattice that achieves the highest critical load, revealing unexpectedly, that the skeletal system

of E. aspergillum is very close to this design optimum. These results demonstrate that an integrated

work flow, combining biological, computational, and mechanical testing approaches, can guide the

design of lattice architectures which are structurally more robust than those currently employed in

modern infrastructure and devices.

2.3 Design Considerations

To understand the mechanical benefits of the sponge’s skeletal architecture, we compared the per-

formance of its geometry to that of three other 2D square base lattices, all with the same total

volume (i.e. the same total amount of material), to ensure a fair comparison [104]. In each of these

structures, the base square architecture was comprised of elements with lengths L, and with rect-

angular cross sections characterized by a depth H large enough to avoid out-of-plane deformation.
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More specifically, we considered Design A, which was inspired by the sponge and comprised hor-

izontal and vertical elements with thickness TA,nd = . L and two sets of parallel double diagonals

with thickness TA,d = . L located at a distance S = L/(
√

+ ) from the nodes (figure 2.2(a));

Design B, which was similar to the sponge-inspired design with TB,nd = . L, but only contained a

single diagonal with thickness TB,d = . L crossing each of the closed cells (figure 2.2(b));Design C,

which was inspired by the bracings found in modern engineering applications with TC,nd = . L and

contained a crossed set of diagonal beams with thickness TC,nd = . L in every cell (figure 2.2(c));

and Design D, with no diagonal reinforcement, and with horizontal and vertical elements with

thickness TD,nd = . L( + /
√

) (figure 2.2(d)). Note that in an effort to further provide a fair

comparison, the volume ratio of diagonal to non-diagonal struts was also identical for Designs A,

B, and C (see section A.2 and figures A.2 to A.5 for details and assumptions).

2.4 Experimental and Numerical Results

We began our analysis by comparing the mechanical response under uniaxial compression along

the vertical elements of the four lattices described above. Samples comprising × tessellations

of square cells with L = . cm and H = cm were fabricated with a Connex500 multi-material 3D

printer (Stratasys, Eden Prairie, Minnesota, United States) from a Shore A 95 durometer material

(digital elastomer FLX9795-DM) and compressed uni-axially using a single axis Instron (Model

5969) with a 50 kN load cell (figure 2.2(e)). Two key features emerged from the stress-strain

curves reported in figure 2.2(f). First, we found that all designs with diagonal reinforcement (i.e.

Designs A-C) were characterized by a nearly identical initial elastic response, demonstrating that

the different diagonal reinforcement designs did not impact the structure’s initial overall stiffness.
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Design D, as expected, exhibited a higher initial stiffness because of its thicker vertical and hori-

zontal elements. Second, all curves showed a clear maximum load bearing capacity, with Design

A (the sponge-inspired design) accommodating the highest load. Since each maximum load corre-

sponded to the onset of buckling, we inferred that Design A displayed the highest critical buckling

stress between the considered designs. Furthermore, we found that in all three designs with di-

agonals, the post-buckling behavior resulted in a homogeneous pattern transformation throughout

the sample (figure 2.2(e)). In contrast, for Design D, the critical mode resulted in a much larger

wavelength than the size of a square unit cell and resulted in a post-buckled shape qualitatively

similar to that of a compressed buckled beam (more information on the experimental methods can

be found in section A.3 and table A.1).

Design A Design B Design C Design D
(a) (b)

(e)

(c) (d) (f)

L

0% 

6% 

Strain
  (  )

Figure 2.2: Experimental and numerical results. (a)-(d) Schematics of the different lattice geometries (Design
A-D) considered in this study. (e)Mechanical deformation snapshots of the different 3D-printedmodels at 0%
applied strain (top row) and 6% applied strain (bottom row). Scale bar: 3 cm. (f) Numerical (dashed lines) and
experimental (solid lines) stress-strain curves for n = independently tested samples of each design. Curves
in this plot are color coded according to (a)-(d). All designs are characterized by the same total volume andmass
ratio allocation between non-diagonals and diagonal elements.
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In an effort to understand how the sponge-inspired lattice design resulted in significantly im-

provedmechanical performance, we conducted Finite Element (FE) simulations usingABAQUS/Standard

(Dassault Systémes SE, Vélizy-Villacoublay, France). For these analyses, the geometries were

constructed using Timoshenko beam elements (ABAQUS element type B22) and the material’s

response was captured using an incompressible Neo-Hookean material model with a shear mod-

ulus μ = . MPa. Our simulations consisted of three steps: (i) a buckling analysis (∗BUCKLE

step in ABAQUS) was conducted to obtain the buckling modes for each of the structures, (ii) a

perturbation in the form of the lowest buckling mode was then applied to the nodes of the mesh,

and (iii) a static non-linear analysis (∗STATIC step in ABAQUS) was performed to evaluate the

nonlinear large deformation responses. To verify the validity of our analyses, we investigated the

responses of models identical to those specimens tested in our Instron compression studies. As

shown in figure 2.2(f), we found close agreement between the numerical and experimental results

up to the onset of buckling, confirming the accuracy of our simulations for capturing the linear

regime and critical load. Next, we extended our FE model to explore the effects of loading direc-

tion. To reduce computational cost and eliminate edge effects, we capitalized on the periodicity

of the structures and investigated the response of Representative Volume Elements (RVEs) with

suitable periodic boundary conditions [106,107] (see section A.4 and figures A.6 to A.24 for details

and additional numerical analysis). Figure 2.3(a) shows the evolution of the structures’ effective

stiffness, Ē, as a function of the loading angle θ. We found that the stiffness of all structures con-

taining diagonal reinforcement was virtually identical for any loading angle, further confirming

that the structural stiffness was predominantly governed by the amount of material allocated along

the loading direction. As a result, Design D, in which all of the material was allocated to the non-

diagonal elements, exhibited the highest stiffness for θ = ◦, but had almost negligible load-bearing
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capacity for θ = ◦, where the only contribution to its stiffness came from the minimal bending

resistance of the joints (see figure A.21 for a detailed analysis of the effect of joint stiffness).

(a) (b)

Design A

Design B

Design C

Design D

(c)

(d)

Figure 2.3: Numerical results describing structural response to varying loading angle. (a) Evolution of the struc-
tural stiffness for infinite size periodic lattice designs as a function of loading angle θ. (b) Critical bucklingmodes
forDesign A-D at θ = ◦. (c) Evolution of the effective buckling stress for the different lattice designs as a func-
tion of loading angle θ. Results are obtained by simulating a super-cell with 10 by 10 unit and periodic bound-
ary conditions. (d) Evolution of the effective buckling stress as a function of the loading angle θ for finite (non-
periodic) lattice structures comprising 10 by 10 unit cells. In each plot, the line color corresponds to the designs
by color in (b). All designs are characterized by the same total volume andmass ratio allocation between non-
diagonal and diagonal elements.

Next, we investigated the effect of θ on the buckling behavior ofDesigns A-D.We found that the
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effective critical buckling stress (σ̄cr) of Design A was higher than the other diagonally reinforced

designs (namely Design B and Design C) for all values of θ (figure 2.3(b)). Design D surpassed

Design A for ◦ < θ < ◦ when considering an infinite structure. However, given the global

nature of the buckling mode for Design D, such performance was largely affected by boundary

effects and the critical buckling stress was significantly reduced when considering a finite size

structure comprising × RVEs (figure 2.3(d) - see also figure A.20). Furthermore, theDesign A

geometry maintained its robustness even after modifications to the lattice through the introduction

of various levels of disorder, an observation consistent with the features observed in the native

sponge skeleton (see figure A.23 and figure A.24).

2.5 Optimization Results

Having demonstrated the benefits of the sponge-inspired design (Design A) compared to Designs

B-D, we wondered whether there existed a different diagonally reinforced square lattice design

with even higher critical buckling stress. To address this question, we formulated an optimization

problem to identify the number of diagonals, N, their distance from the nodes of the square lattice

Si (with i = , , ..,N), as well as the ratio between diagonal and non-diagonal elements λ = Vnd/Vd

(Vnd and Vd being the volume of the non-diagonal and diagonal elements, respectively) that resulted

in the highest buckling stress. Specifically, we considered finite size structures composed of ×

RVEs and focused on uni-axial compression parallel to the non-diagonal elements (i.e. θ = ◦),

while constraining the total volume of the RVE to match that of the designs considered in fig-

ure 2.2. We maximized the objective function Z = σ̄cr using FE simulations coupled to a Python

implementation of the CovarianceMatrix Adaptation Evolution Strategy algorithm (CMA-ES) [108]
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(more information on the implementation found in section A.5, figures A.25 to A.27 and tables A.2

and A.3). For each set of inputs identified by CMA-ES, a FE buckling analysis was conducted to

obtain σ̄cr and, therefore, evaluate the objective functionZ. We conducted seven separate optimiza-

tions, each considering a fixed integer number of diagonal elements N, ranging from one to seven

(N = Z ∈ [ , ]). Given the high strength of lattices reinforced by diagonals aligned at a 45◦ an-

gle [109], in all the runs we assumed that all of the diagonals were oriented at 45◦ with respect to the

non-diagonal members and that Vd and Vnd were distributed equally among the diagonal and non-

diagonal elements, respectively. Furthermore, to ensure symmetry, we assumed that S i− = S i

(i = , , ...,N/ ) if N is an even number and S = and S i− = S i (i = , , ..., (N − )/ ) for odd

values of N. In figure 2.4(a) we report the highest σ̄cr identified by CMA-ES for all considered num-

ber of diagonals N. Remarkably, we found that the highest σ̄cr was only . % higher than that of

Design A and occurred for a design similar to the sponge-inspired one (with two diagonals located

at a distance S = . L from the nodes, and volume distributed so that λ = . ). As such, this

numerical prediction, which was validated by experimental results (figure 2.4(b)), demonstrated

that the sponge-inspired design was extremely close to the design exhibiting the highest critical

stress.

2.6 Discussion

Thus far, we demonstrated that the skeletal organization pattern found in E. aspergillum could be

adapted to realize lattice structures with high buckling resistance under uniaxial compression. How-

ever, it should be noted that the superior mechanical performance of the sponge-inspired lattice (i.e.

Design A) is not limited to this loading condition. To demonstrate this important point, figure 2.5
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Figure 2.4: Optimization results and experimental validation. (a) Optimal value of critical buckling load for
varying number of diagonals. The color of each point represents the optimal mass ratio λ. (b) numerical (dashed
lines) and experimental (solid lines) stress-strain curves for n = independently tested samples ofDesign A and
the optimal design. (c) Experimental snapshots of the optimal design at 0% applied strain (top figure) and 6%
applied strain (bottom figure). Scale bar: 3 cm.

shows results for a slender tessellation of × square cells loaded in three point bending. In this

scenario, using an Instron, the slender geometry was mounted in a three-point bending configura-

tion and a displacement δappl was applied at the top center of the geometry. As the displacement

was applied, the reaction force was measured and plotted in figure 2.5(b) for the various geome-

tries. Both our experiments and FE simulations demonstrated that the sponge-inspired design was

stiffer and could withstand % higher loads over a larger range of applied displacements, illustrat-

ing the potential benefit of incorporating such a design into suspended structures. We further used

FE simulations to evaluate the performance of Designs A-D in 5 other loading regimes. For all of
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the loading cases considered (see figures A.9 to A.12), we found that Design A was able to with-

stand significantly higher loads than any of the other structures – making it the best candidate to

realize load bearing structures for a variety of applications. Although in this study, we focused on

lattices at the centimeter scale, we want to emphasize that our approach can be extended to design

structures over a wide range of length scales as long as within the continuum limit. However, in

our analysis, we did not account for the effect of gravity, which could become a significant source

of loading for large-scale structures.

2.7 Conclusion

In summary, through the analysis of the skeletal organization of E. aspergillum, we discovered that

its non-trivial, double-diagonal, checkerboard-like square lattice design provides unprecedented

mechanical performance. We compared the sponge-inspired lattice (Design A) to other common

diagonally reinforced square lattices (Design B-C) and a non-diagonally reinforced lattice (Design

D), all with the same total mass, and found that the sponge-inspired design provides a superior

mechanism for withstanding loads prior to the onset of buckling for a wide range of loading condi-

tions. Additionally, by using optimization tools to survey a broad multi-dimensional design space,

we found that the sponge skeletal architecture is nearly identical to the lattice design that provides

the highest critical stress under uniaxial compression.

The results presented here, therefore demonstrate that by intelligently allocatingmaterial within

a square lattice, it is possible to produce structures with optimal buckling resistance, without the

need to add additional material to the system. The mechanical properties of the sponge-inspired

lattice described here thus have implications for improving the performance of a wide range of truss
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systems, with applications ranging from large-scale infrastructure such as bridges and buildings,

to small-scale medical implants.

While not the primary focus of the present study, the results presented here may also shed

new light on functional aspects of the skeletal organization in E. aspergillum. It is important to

note that skeletal maturation in this and related species progresses through two distinct phases (a

”flexible” phase and a ”rigid” phase), ultimately resulting in the terminal growth form shown in

figure 2.1 [7,20,110]. In the early ”flexible” stage of growth, the vertical, horizontal, and diagonal

skeletal struts are not fused to one another, and thus can accommodate radial expansion of the

skeletal cylinder. In addition, at this point, the mechanical behavior of the sponge skeleton is dom-

inated by the properties of the individual spicules, which have been reported to support significant

bending deformation and fail at strains greater than those found for buckling in our lattices, namely

at strains greater than ε ≈ . [111,112]. Once the maximum length and width of the cylindrical lat-

tice is achieved, the skeleton goes through a series of rigidification steps, resulting in a progressive

stiffening of the skeletal system through nodal fusion of the vertical, horizontal, and diagonal struts

via the deposition of a lower modulus laminated silica cement [113], followed by the addition of the

spiraling external ridges and additional densification of the skeleton. Therefore, while the results

presented here are thus unlikely to be biologically relevant with regards to the fully mature skeleton

shown in figure 2.1, they may very well be relevant during the early stages of skeletal consolidation

in this and related species where the buckling strains exceed the laminate yield strains [111–113].
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(a)

(b)

Desing A

Design B

Design C

Design D

Figure 2.5: Numerical and experimental results of slender structures undergoing 3-point bending tests. (a)
Experimental snapshots of the four lattices comprising 11×2 square cells when loaded in 3-point bending at
δappl/L = . . Scale bar: 3 cm. (b) Evolution of n = experimentally obtained samples (continuous lines) and
numerically (dashed lines) recorded reaction forces for the four designs as a function of the applied displace-
ment.

Methods and Materials

Parameter derivation and explanation of each geometry can be found in section A.2. Details on the

fabrication of the samples and the protocol for testing can be found in section A.3. The numerical

setup and explanation for the FE analysis can be found in section A.4. Additional numerical anal-

ysis including parameter exploration and consideration for different cross-sectional geometries is
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presented in section A.4.2. A detailed description of the optimization algorithm can be found in

section A.5.
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3.1 Abstract

From the discovery of functionally graded laminated composites, to near-structurally optimized

diagonally reinforced square lattice structures, the skeletal system of the predominantly deep-sea

sponge Euplectella aspergillum, has continued to inspire biologists, materials scientists, and me-

chanical engineers. Building on these previous efforts, in the present study, we develop an inte-

grated finite element and fluid dynamics approach for investigating structure-function relationships

in the complex maze-like organization of helical ridges that surround the main skeletal tube of this

species. From these investigations, we discover that not only do these ridges provide additional

mechanical reinforcement, but perhaps more significantly, provide a critical hydrodynamic benefit

by effectively suppressing von Kármán vortex shedding and reducing lift forcing fluctuations over

a wide range of biologically relevant flow regimes. By comparing the disordered sponge ridge ge-

ometry to other more symmetrical strake-based vortex suppression systems commonly employed

in engineering contexts ranging from antennas to underwater gas and oil pipelines, we find that the

unique maze-like ridge organization of E. aspergillum can completely suppress vortex shedding

rather than delaying their shedding to a more downstream location, thus highlighting their potential

benefit in these engineering contexts.

3.2 Introduction

The geometrically complex siliceous skeletal systems of marine sponges have attracted a great deal

of attention from the scientific community due to their multi-scale structural hierarchical organi-

zation and remarkable damage tolerance [18,98,114]. For example, the mineralized tubular skeleton
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from one such species, Euplectella aspergillum consists of bundles of individual needle-like ele-

ments (spicules) that are cemented together to form a diagonally reinforced square lattice-like struc-

ture that is further covered by a series of helical ridge-like features [6,96]. Detailed investigations

into the various components of this structural hierarchy have revealed their surprising mechanical

benefits.

First, single-spicule studies have revealed the presence of an underlying laminated architecture

consisting of concentric lamellae of consolidated silica nanoparticles separated by thin organic

interlayers. The silica layers decrease in thickness from the spicule core to its periphery, resulting in

a functionally graded design that effectively retards crack propagation through the spicules, while

simultaneously increasing their buckling resistance [112,114].

At a second level of structural hierarchy, bundles of these laminated spicules are further orga-

nized into a square lattice-like structure which is reinforced by pairs of diagonal struts that cross

through every other cell of the lattice, creating a checkerboard-like organization. Through a com-

bination of finite element simulations and direct mechanical testing, it has been demonstrated that

this non-intuitive diagonal reinforcement strategy creates a geometry that exhibits a near-optimal

strength-to-weight ratio for this specific family of truss structures [115].

Finally, surrounding the underlying diagonally reinforced square lattice are a series of right and

left-handed helical ridges, which are oriented perpendicular to the surface of the skeletal tube and

form a distinctive maze-like organization. While previous studies have speculated that these ridge-

like features provided a mechanical benefit to the sponge [6], as has been demonstrated for other

reinforcing axial and helical rib-like elements on tubular structures [22–24], the striking morpholog-

ical similarity of the sponge ridges to helical strakes used for vortex suppression in cylindrical

structures under flow [116–119] motivated the present study which explores their potential hydrody-
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namic functionality.

Vortex shedding is a topic of great concern to the engineering community, not only for its

ability to excite vortex-induced vibrations (VIV), potentially leading to resonance structural vibra-

tions [9,116], but also for its periodic forcing effects and noise generation [119]. Fluid flow past bluff

cylindrical structures is known to generate vorticity due to the presence of shear in the fluid’s bound-

ary layer. These small vorticity regions coalesce into regions of concentrated vorticity (known as

vortices) on both sides of the cylinder, leading to a phenomenon known as von Kármán vortex shed-

ding. [116] Because of the implications of von Kármán vortex shedding on the structural integrity

of cylindrical forms, the addition of helical strakes (protruding ridge-like elements) is commonly

employed as a method to suppress this effect. [117,119]

Here, we describe a computational framework for investigating structure-function relationships

of the complex helical ridge system in the skeleton of Euplectella aspergillum. Using an integrated

approach that combines finite element simulations and computational fluid dynamics, we explore

both the mechanical and hydrodynamic effects of these skeletal features and compare these re-

sults to alternative ridge geometries employed for similar functions in their synthetic engineering

analogues.

3.3 Skeletal Geometry

As demonstrated from previous studies [6], the skeletal system of a fully mature specimen of E. as-

pergillum (figure 3.1(a)) is covered with a laminated silica cement, forming a rigid construct, and

contains a maze-like network of external helical ridges that extend perpendicular to the skeletal

tube. To explore the organizational details of this complex ridge system, we examined ten differ-
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Figure 3.1: Skeletal features of Euplectella aspergillum. (a) Photograph of a cleaned and dried siliceous
skeleton of E. aspergillum, clearly depicting its tapered tubular form, its highly regular diagonally reinforced
checkerboard-like square lattice structure, and its complex network of external ridges. (b) Unrolled ridge di-
agram illustrating the location of ridge elements in relation to the checkerboard-like lattice system. Filled
squares denote the presence, andwhite squares denote the absence of ridge elements. Red squares denote
clockwise ridge elements, blue squares denote counter-clockwise ridge elements, and purple squares denote
corner elements (which do not count toward the number of either clockwise or counter-clockwise elements).
(c) Bar plot showing themean occupancy fraction for ridge elements (n=10 from figure B.7). Data presented
are averages, and error bars represent +/- one standard deviation. The purple bar shows the total ridge occu-
pancy fraction, which includes all clockwise (red bar), counter-clockwise (blue bar), and corner elements. (d)
Plot adapted fromWeaver et al. [6], which illustrates that the combination of a decreasing volume per unit area
for the underlying diagonally reinforced square lattice (orange) with an increasing ridge height (green) along the
length of the tapered tube, results in a relatively consistent total material volume of silica per unit area through-
out the entire skeletal system (black dotted line). For the orange and green data, the solid lines denote averages
and the shaded regions denote +/- one standard deviation for n=10 specimens.

31



ent sponge skeletal samples and manually mapped each of the different ridge designs, ultimately

constructing a series of planar ridge connectivity diagrams, a representative example of which is

shown in figure 3.1(b) (all ten maps are shown in figure B.7). In this surface map, the colored

squares represent the ridge locations (the ridge-less unit cells are white), with red squares denoting

clockwise ridges, and blue squares denoting counterclockwise ridges (corner elements are denoted

in purple). From examination of these different sponge specimens, we identified several common

ridge design themes, which include the following (and are consistent with observations from pre-

vious studies [6]):

• The ridges occur at 45-degree angles relative to the long axis of the skeletal tube.

• The ridges populate, on average, every other closed square in the skeletal lattice.

• The ridges intersect at 90-degree angles.

• The ridges never cross each other, however, they may form T-junctions.

• The total number of ridge-filled cells is similar between specimens, as shown by the purple
bar in figure 3.1(c), which denotes themean ridge quantity for ten different sponge specimens
(error bars represent +/- one standard deviation).

• The total number of clockwise ridges is similar to that of the total number of counter-clockwise
ridges, as denoted by the red and blue bars in figure 3.1(c), which correspond to the mean
clockwise and counterclockwise ridge lengths for ten different sponge specimens (error bars
represent +/- one standard deviation).

Finally, it is important to note that, on average, the height of the ridges linearly increases from

ca. 1 mm to ca. 6 mm from its anchoring point on the seafloor to its apex (illustrated by the green

line in figure 3.1(d)). [6] Despite this increasing ridge height, a relatively constant material volume

per unit area has been measured along the length of the tapered skeletal network (illustrated by the

dashed black line in figure 3.1(d)) [6], which results from a simultaneous increase in lattice unit cell

size and a relatively constant strut thickness, which lead to a corresponding decreasing strut width-

to-unit cell width ratio as you ascend the sponge (illustrated by the orange line in figure 3.1(d)).
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Figure 3.2:Workflow for the generation of sponge structural models. (a) Schematics showing the under-
lying diagonally reinforced square unit-cell geometry, which was tiled to produce the tubular lattice shown in
(b). (c) Schematics showing the different ridge elements used to construct the complete skeletal model. Each
component is color-coded in the left map, indicating its location. The dotted lines in each of the four 3Dmodels
correspond to themain ridge supporting elements, the brightly colored dots denote nodes of fusion between
the struts, and the black arrows denote the direction of ridge elongation. To construct the complete ridge sys-
tem for each tested sponge geometry (as shown in (d)), each of these four elements could be either translated,
rotated, or mirrored (with the exception of the Bidirecitonal design which requires an additional crossing ele-
ment).

3.4 Model Generation

To construct the 3D models used in both our mechanical and hydrodynamic studies, we subdivided

the geometry into two primary components: (1) the hollow cylindrical core, and (2) the external

ridge system.

3.4.1 Hollow cylindrical core

Structural analysis. For the structural analyses, we considered only the load-bearing glassy

skeletal components of the sponge. To produce this model, we tiled the diagonally reinforced

square lattice geometry described in Fernandes et al. [115] (figure 3.2(a)) to generate a tubular lat-

tice (figure 3.2(b)), which consisted of 32 horizontal struts, and 32 vertical struts in circumference

(creating a cylinder with height to radius ratio H/R ∼ . ). The ratio between the strut diameter
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and strut separation was Dnd/L = . (where L is the square grid strut separation) to match the

average dimensions found in this species [115] (figure 3.2(a)). Overlaid on this square grid is a

system of paired diagonal reinforcing struts (figure 3.2(a)), the periodic spacing of which creates

a checkerboard-like open and closed cell structure, where every open cell contains an octagonal

aperture. This geometry leads to two independent pairs of crisscrossing diagonals struts, each with

a spacing of

S =
L√
+

.

In this configuration, the pairs of diagonals are thinner than the non-diagonal struts [6,115], with a

relationship given by [115]

Dd =
Dnd .

Hydrodynamic analysis. For the hydrodynamic analyses, we explored three different geometries

for the cylindrical core, all characterized by an external radius Ro, an internal radius Ri = . Ro,

and a height H = . Ro:

• No Pores: This design consisted of a featureless smooth cylinder (see figure 3.3 - second
column), a geometry that has been widely studied in the field of hydrodynamics, and is
known to produce von Kármán vortices. [120,121]

• Small Pores: Inspired by the anatomy of living specimens of E. aspergillum, small holes
(approximated as octagons) populate locations corresponding to the positions of every open
square in the underlying diagonally reinforced skeletal lattice (see figure 3.3 - third column).
In this configuration, the effective surface porosity is given by φs = . . For details regard-
ing the geometry and porosity calculations, see figure B.1.

• Large Pores: This geometry is very similar to that of the Small Pores tube, but with larger
diameter holes (see figure 3.3 - third column). The porosity of this design reflects that of
only the sponge’s skeleton, and the effective surface porosity of this structure is given by
φs = . . For the details regarding geometry and porosity calculations, see figure B.1.
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To create the small and large pore models, respectively, octagonal openings measuring with

side S = . L (figure 3.4(f) and (g)) and S = . L (figure 3.4(h) and (i)) were cut through the

cylinder-ridge construct.

3.4.2 External ridge system

For our structural and hydrodynamic analyses, we considered three different diagonal ridge ar-

rangements (figure 3.3)

• Unidirectional Ridges: This geometry consists of eight uninterrupted parallel unidirectional
helical ridges, each of whichmeasures 32 cells in length, and occupy every other filled square
cell of the sponge’s skeletal lattice (figure 3.3(b)).

• Bidirectional Ridges: As with the unidirectional ridge model, this design also incorporates
eight helical ridges, each of which measures 32 cells in length. However, for this design,
four of the helices are right-handed and four are left-handed (figure 3.3(c)).

• Sponge Ridges: Inspired by the external ridge structure of E. aspergillum, this geometry is
composed of a maze-like combination of right- and left-handed ridges that occupy every
other filled square cell of the sponge’s skeletal lattice. One example (from the list of of ten
mapped sponges) is shown in figure 3.3(d). The other nine mapped designs can be found in
figure B.7.

It is important to note that for the three different ridge configurations described above, the total

ridge lengths are nearly identical. Furthermore, in all our models, we chose the height of the ridges

to be hr = . L, which is equivalent to the mean ridge height (Rr-Ro in figure 3.4(c) and (d)) across

the length of the sponge. [6]

Structural analysis. To generate the ridges for our structural models, we first identified the four

distinctive design elements shown in figure 3.2(c), which formed the basis of a complete ridge

system. These elements are a result of ridge continuations (green schematic), 90 degree turns

(purple schematic), T-junctions (orange schematic) and ridge terminations (blue schematic) in the
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Figure 3.3: Fully constructed skeletal models for structural and hydrodynamic analyses. Schematics
showing (a) the baseline cylinder (containing no ridges), (b) theUnidirectional ridge design, (c) the Bidirectional
ridge design, and (d) one representative example of the Sponge ridge design. For each ridge geometry, we also
considered four variations of the inner tube (left to right): a solid (nonporous) tube, a low-porosity tube (match-
ing the porosity of the living sponge), a high-porosity tube (matching the porosity of only the skeleton), and that
of only the load-bearing skeletal elements of a sponge. CFD simulations were conducted on the first three tube
geometries (solid, low-porosity, and high-porosity geometries) and FE simulations were conducted on the last
geometry (load-bearing skeletal elements).
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Figure 3.4:Hydrodynamic model generation workflow. (a) Schematics showing one of the ten sponge ridge
diagrams that provided a roadmap for the construction of a complete ridge network (b). The apex of the trian-
gular ridges (blue) cross diagonally through the squares in (a) and their flat sides contact the underlying cylin-
der (gray) at the geometric centers (denoted by red dots) of the octagonal openings shown in figure 3.2(a). (c)
Schematics showing a cross-sectional view of the non-porous cylindrical core (gray) with the labeled radius
encompassing the ridge height Rr. (d) Schematics showing the cylinder thickness parameters, with Ro and Ri de-
noting the outer and inner radii, respectively. For (c) and (d), the vertical black dotted lines denote themodel’s
neutral axis. (e) Schematics showing the complete non-porous baseline ridge geometry, which was generated
from themap shown in (a). High (f) and low (g) magnification views, showing the geometries of the octagonal
holes (red) for the small pores containing a side length of So ≈ . L, which approximates the porosity of a liv-
ing sponge. High (h) and low (i) magnification views, showing the geometries of the octagonal holes (red) for the
large pores containing a side length of So ≈ . L, which approximates the porosity of only the sponge’s glassy
skeletal system.
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sponge ridge system. Utilizing these elements and their possible rotations, we generated all of the

different ridge-containing models. For all of the struts composing the ridge structure, the diameter

matched that of the non-diagonals, namely, Drg = Dnd, where Drg is the ridge strut diameter and

Dnd is the non-diagonal strut diameter.

Hydrodynamic analysis. To generate the ridges for our hydrodynamic models (which were mod-

eled after those found in living examples of E. aspergillum), we began with a planar ridge diagram

(figure 3.4(a)), which was used as a road map to construct a series of triangular surface ridges

(figure 3.4(b)) on an extruded 32-sided polygon (which approximated the cylindrical geometry of

the sponge). The flat-sided ridges were designed such that their apex ran diagonally through the

squares in the planar ridge map, and contacted the cylinder at a location that corresponded to the

geometric centers of each of the octagonal openings shown in figure 3.4(a) (and denoted by the red

dots in figure 3.4(b)).

3.5 Structural Analyses

3.5.1 Methods

In an effort to understand how the ridges affected the sponge’s structural performance, we con-

ducted Finite Element (FE) simulations using ABAQUS/Standard (Dassault Systémes SE). For

these analyses, the geometries were constructed using Timoshenko beam elements (ABAQUS ele-

ment type B22) with circular cross-sections and the material’s response was captured using a linear

elastic material model with Young’s modulus Emat. In our simulations, we considered the ten dif-

ferent sponge ridge designs shown in figure B.7 and compared their response to theUnidirectional
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and Bidirectional models. We also considered a model without ridges, where the ridge material

was instead allocated to the cylindrical beams of the underlying diagonally reinforced square lattice

(we refer to this model as the Reallocated Ridge Mass model).

For each design, we assumed that the cylindrical sponge structure was fully constrained at its

base (i.e. ux = uy = uz = ), and performed two different analyses: (1), a linear static analysis

to extract the stiffness, and (2), a buckling analysis (*BUCKLE step in ABAQUS) to to obtain

the critical buckling force. In the simulations, we considered four loading cases (illustrated in

figure 3.5(a))

• Compression: For this case, we applied a vertical displacement parallel to the z-axis (δappl =
δz) to all the nodes of the top ring.

• Torsion: For this case, we applied a tangential displacement (δappl = δθ = θapplR) to all the
nodes of the top ring.

• Bending: For this case, we applied a displacement in the x-y plane (δappl =
√
δx + δy) to all

the nodes of the top ring. Note that we systematically varied δx and δy to survey the bending
behavior in different directions. Specifically, we consideed 8 equally spaced directions for
each structure.

• Pressure: For this case, we apply a radial displacement (δappl = δR) to all nodes belonging to
the cylindrical core of the models.

To implement these boundary conditions for Compression, Torsion, and Bending, we con-

strained the degrees of freedom of the nodes of the top ring to a virtual node using equation con-

straints. Similarly, for the loading case Pressure, we tied the degrees of freedom of all nodes

belonging to the cylindrical core to a virtual node using equation constraints. For all loading cases,

we then applied δappl to the virtual nodes and extracted the resulting reaction force RF.
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Figure 3.5: Structural Analysis. (a) Schematics illustrating boundary conditions considered in the FE simula-
tions. For all considered loading conditions, the displacement at the bottomwas held fixed, namely ux = uy =
uz = , and a displacement δappl (indicatedwith arrows) was applied. (b)-(c) Bar plots showing normalized stiff-
ness RF/(δapplLEmat) and normalized critical buckling force Fcr/(L Emat)with different colors corresponding to
each loading condition. Themodels consideredwere the tenmapped Sponge geometries (see figure B.7), theUni-
directional and Bidirectional geometries, the Ridge-Free design, and the Reallocated RidgeMass design, from left to
right respectively. For the the Reallocated RidgeMass design, we employed the Ridge-Free design, but reallocated
the volume from the ridges into the cylinder elements, thusmaking each element thicker andmore robust.
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3.5.2 Results

In figure 3.5(b) and (c) we report the numerically predicted stiffness and critical buckling load for

all considered models and loading cases. We find that the addition of ridges increase the overall

stiffness of the cylindrical structure for loading conditions Bending and Pressure (figure 3.5(b))

and improve the buckling performance for all loading conditions on average by ca. 2-fold over the

ridge-free example (figure 3.5(c)). However, if we compare the performance between the different

ridge-containing geometries, we see that the stiffness values differ negligibly between the different

ridge designs. In contrast, if the ridge material volume was instead allocated away from the ridge

system and into the main cylindrical truss frame, the resulting structure, on average, measurably

outperforms the other designs for most loading conditions in terms of both stiffness and buckling

force. This result is not unexpected, since in this scenario, more material is allocated to the truss

members aligned parallel to the loading direction.

These results demonstrate that the unusual maze-like ridge pattern found in E. aspergillum

does not likely add any significant additional mechanical benefit (with regards to either stiffness

or critical buckling force) compared to the other investigated ridge geometries, which prompted

additional studies into its potential hydrodynamic functions (see section 3.6, below). Further, the

observation that reallocating the ridge material into the underlying diagonally reinforced skeletal

lattice, resulted in a significant enhancement in the structure’s mechanical performance may be

functionally relevant to the sponge’s skeletal anatomy. As shown in figure 3.1(d), the sponge’s

material volume per unit area remains relatively constant along the length of the tapered skeletal

tube, which is achieved due to an increase in ridge height (and volume), from the base of the sponge

to its apex, and a corresponding loss in volumetric skeletal density of the underlying diagonally
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Figure 3.6:Hydrodynamic results for non-porous cylindrical geometries. (a) Plot showing transient lift
coefficientCl for the different non-porous geometries. (b)Magnified view of transient lift coefficients, show-
ing the initial shedding behavior for different non-porous geometries. (c) Plot showing power spectral density
(PSD) as a function of Strouhal number for different ridge-containing geometries. The vertical dashed black line
shows the empirical Strouhal number for a smooth cylinder using a Re = flow regime. Note that the last
20 seconds of the transient data (when the flow reaches a periodic state) were used to compute the PSD. (d)
Plot showing transient drag coefficientCd for the different ridge-containing geometries. The horizontal black
dashed line corresponds to empirical drag coefficient data for a smooth cylinder using Re = flow regime.
(e) Vorticity fields illustrating shedding for the different non-porous geometries.

reinforced square lattice (which results from an increase in vertical and horizontal strut spacing). As

such, the mechanically most robust portion of the composite skeleton coincides with its thickened

and ridgeless connection point to the flexible holdfast apparatus, which secures the sponges into

the soft sediments of the sea floor. Based on our results, this transition in the skeletal anatomy from

the rigid skeleton to its flexible holdfast apparatus, is likely a point of highest mechanical stresses

and a potential location of skeletal failure, an observation consistent with our simulated buckling

locations shown in figure B.8.
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3.6 Hydrodynamic analyses

To explore the potential hydrodynamic benefits of the unique maze-like collection of bidirectional

helical ridges located on the skeletal tube of E. aspergillum, we developed a Computational Fluid

Dynamics (CFD) framework, and compared their performance to alternative equal-length ridge

geometries that are commonly employed inmodern engineering applications for vortex suppression

and drag reduction [116,117,119].

Since the natural habitat of the genus Euplectella can vary widely (occurring in low and temper-

ate latitudes at depths ranging from 36 to 5,050 meters [122]), these sponges are likely to experience

a wide range of flow patterns and velocities that must be considered. As such, in our simulations,

we considered non-dimensional Reynolds number Re ∈ [ , ], where Re was defined as

Re =
uL
ν
,

u being the flow speed, L the characteristic length scale, and ν the fluid kinematic viscosity. It

Figure 3.7: PSD for additional sponge geometries. PSD plot comparing the different considered structures
to additional sponge ridge designs obtained from real sponge samples (see figure B.7). Results are presented for
Re = , .
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Figure 3.8:Hydrodynamic results for cylindrical geometries exhibiting biologically relevant (small)
porosities inspired by the anatomy of living specimens. (a) Plot showing transient lift coefficientCl for the
different porous geometries. (b)Magnified view of transient lift coefficients, showing the initial shedding behav-
ior for different non-porous geometries. (c) Plot showing power spectral density (PSD) as a function of Strouhal
number for different ridge-containing geometries. Note that the last 20 seconds of the transient data (when
the flow reaches a periodic state) were used to compute the PSD. (d) Plot showing transient drag coefficientCd
for the different ridge-containing geometries. (e) Vorticity fields illustrating shedding for the different different
non-porous geometries.

is important to note that the length scale L for all computations do not include the dimensions of

the ridges (i.e. cylinder outer diameter only), and the resulting Re range encompasses a large flow

regime, where vortex shedding behind cylindrical structures is known to occur.

3.6.1 Methods

To model fluid flow around the different cylindrical geometries, we used the CFD package ANSYS

CFX, Release 18, which employs a hybrid finite-volume/finite-element approach to discretizing

the Navier Stokes equations governing fluid flow. The systems of equations were solved using
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Figure 3.9:Hydrodynamics results for Re = , and Re = , low-porosity cylinder baseline and
sponge. (a) Plot showing transient lift coefficientCl as a function of time at Re = , . (b) PSD plot showing
density with frequency converted to Strouhal number. Note that the last 10 seconds of the transient data were
used to compute the PSD at Re = , . (c) Plot showing transient drag coefficientCd as a function of time
at Re = , . (d) Plot showing transient lift coefficientCl as a function of time at Re = , . (e) PSD plot
showing density with frequency converted to Strouhal number at Re = , . Note that the last 5 seconds of
the transient data were used to compute the PSD. (f) Plot showing transient drag coefficientCd as a function of
time at Re = , .

an unsteady fully-implicit, fully-coupled multi-grid second-order backward Euler solver in the

laboratory frame of reference. The Shear Stress Transport turbulence model [123], which combines

the k − ω model near the wall and the k − ε model away from the wall, was used throughout this

study. This choice of turbulence model ensured accurate prediction of onset and amount of flow

separation under adverse pressure gradient conditions. This approach also allowed the model to

handle transitions of the flow from laminar to turbulent, accurately refining the flow profile around

the complex geometry of the ridges. It is important to note that in our CFD simulations, we did not

account for interactions between the flow and the mechanical deformation of the sponge (i.e. we
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Figure 3.10:Hydrodynamic results for cylindrical geometries exhibiting biologically relevant (large)
porosities reflecting the skeletal anatomy of specimens. (a) Plot showing transient lift coefficientCl for the
different porous geometries. (b)Magnified view of transient lift coefficients, showing the initial shedding behav-
ior for different non-porous geometries. (c) Plot showing power spectral density (PSD) as a function of Strouhal
number for different ridge-containing geometries. Note that the last 20 seconds of the transient data (when
the flow reaches a periodic state) were used to compute the PSD. (d) Plot showing transient drag coefficientCd
for the different ridge-containing geometries. (e) Vorticity fields illustrating shedding for the different different
non-porous geometries.

did not perform fluid-structure interaction simulations).

In the hydrodynamic simulations, we focused on comparing one representative sponge ridge

design (from the ten mapped), specifically Sponge 1 shown in figure 3.3(c), to the Unidirectional

and Bidirectional configurations for cylindrical cores with both small and large pores. All models

with a porous cylindrical core were placed at the bottom of a rectangular prism-shaped fluid domain,

with size Ro× Ro× H, to which symmetry condition on the top face and a slip condition on the

bottom face were applied (see figure B.4 for details). To facilitate direct comparisons to previously

published results [8,9], the models with a non-porous cylindrical core were placed in a fluid domain
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with size Ro× Ro×H, to which we applied periodic boundary conditions at the top-bottom faces

(see figure B.3 for details). For all analyses, we then imposed a uniform flow velocity perpendicular

to one of the side walls, zero pressure to the opposite face, and slip conditions on the remaining two

side walls. Finally, we imposed no-slip conditions on the boundaries of the cylindrical structure.

For each model, we conducted simulations to calculate

• Lift coefficient: for each timestep, we obtained the coefficient of lift as

CL =
FL

ρAu
,

where FL was obtained by integrating the perpendicular-to-flow component of the pressure
acting on all external faces of the cylindrical structure, ρ was the fluid density, A was the
surface area of all external faces of the cylindrical structure, and u was the flow velocity.

• Shedding frequency: Once CL was computed as a time series, we performed a Power Spectral
Density (PSD) analysis on the CL data to obtain a power spectrum of frequencies for the lift
force. To obtain the PSD for the time series, we computed the Fourier decomposition of the
signal and analyzed the relative magnitudes of each of the coefficients. In this analysis, the
shedding frequency is identified as the highest power frequency, if shedding exists. Note
that in order to ensure that the vortex shedding results were reproducible for perturbations
within the sponge ridge design space (in addition to Sponge 1), we also performed a the PSD
analysis on two additional sponge ridge configurations (Sponges 2 and 3 in figure B.8).

• Drag coefficient: To measure the drag on the structure, we computed the coefficient of drag
for each time-step, which was defined as

CD =
FD

ρAu
,

where FD was obtained by integrating the parallel-to-flow component of the pressure acting
on all external faces of the cylindrical structure. Note that in order to validate our simula-
tions, we compared our results for a cylinder without pores and without ridges, to the drag
coefficient data obtained from Blevins [9](See figure B.5(b) for more information).

• Flow profile through the openings in the cylindrical core: To investigate the potential role of
the ridges as a mechanism for increasing/redirecting fluid flow through the sponge for feed-
ing/gas exchange purposes, we created a closed cylindrical boundary matching the geometry
of the sponge’s interior and computed the time-averaged flow profile through the openings
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Figure 3.11:Quantification of flow rate through the different investigated geometries. (a) Bar plot
showing time-averaged flow rate through the wall of the low-porosity tubular structures for Re = , .
(b) Bar plot showing time-averaged flow rate through the wall of the high-porosity tubular structure for
Re = , . (c) Bar plot showing time-averaged flow rate through the wall of the low-porosity tubular struc-
ture for Re = , . (d) Bar plot showing time-averaged flow rate through the wall of the low-porosity tubular
structure for Re = , .

in the sponge’s body wall by averaging the flow over three cycles of shedding. Using this
flow profile, we integrated the absolute value of the flow rate over the area of the cylindrical
boundary defined by

V =

∫
A

∣∣∣∣ V̇A
∣∣∣∣ dA.

Note, that because of fluid incompressibility and conservation of mass, the volume flow in
the boundary Vin must equal the volume out Vout leading to a division by 2 to obtain total
volume exchanged.

To balance model accuracy and computational efficiency, in all our simulations we refined

the mesh near the region of interest (in the sponge’s vicinity) and kept the down-field meshing

course. For each of the models, we produced a mesh consisting of more than 2 million elements,

an illustration of which can be found in figure B.6.

3.6.2 Results

In figure 3.6, figure 3.8, and figure 3.10 we report the lift coefficient, shedding frequency, and

drag coefficient (together with numerical snapshots that show the vorticity fields) at Re =

for designs comprising a hollow cylindrical core with no pores, small pores (φs ≈ . ), and large

pores (φs ≈ . ), respectively. For all three cases, we considered three different ridge geometries
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(Unidirectional, Bidirectional, and Sponge configurations) and compared their performance to a

ridge-free control.

As shown in figure 3.6(a) and (b) we find that for the geometries with non-porous cylindrical

cores and either Bidirectional ridges or no ridges, there exists large cyclic lift forcing acting on

the structures. In contrast, we see that for the Sponge and Unidirectional ridge designs, the cyclic

forcing is quickly suppressed. The PSD performed on these lift data reveals that the Sponge and

Unidirectional ridge designs are effective at suppressing vortex shedding forcing on the cylindrical

structure, as evident by the lack of a localized peak in figure 3.6(c). In contrast, we observe vortex

shedding behind the cylinder for both the no ridge and Bidirectional ridge configurations, with the

vortices actually amplified by the bidirectional ridge design (as indicated by a higher peak in the

PSD in figure 3.6(c)). It is also important to note that while the Unidirectional ridge design shifts

the shedding downstream, the Sponge ridge design completely suppresses the vortex shedding

behind its cylindrical structure (see snapshots in figure 3.6(e)), demonstrating a more efficient

vortex suppression mechanism. While the Sponge ridge design outperforms the Unidirectional

ridge design in vortex suppression, it does, however, lead to a slightly increased drag force on the

structure (figure 3.6(d)).

To validate our results, we first compared both the location of the peak in the PSD and the drag

coefficient obtained for a non-porous cylindrical core without ridges to existing empirical data for

a cylinder in a uniform 2D flow at Re = (black dashed lines in figure 3.6(c) and (d) - for more

information, see figure B.5). [8,9] The good agreement between these two data sets confirmed the

suitability of our numerical approach. To further validate the effects of vortex shedding observed

for our selected sponge ridge geometry with a non-porous cylindrical core, in figure 3.7 we ana-

lyzed the PSD for two additional Sponge ridge designs (Sponge 2 and Sponge 3 from figure B.7),
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in addition to the original sponge design (Sponge 1), the Unidirectional, the Bidirectional, and

the cylindrical baseline geometries. In this plot, we observe that all three of the sponge-inspired

designs can efficiently suppress vortex shedding compared to the other more symmetrical ridge

geometries. These results thus demonstrate that the observations presented in figure 3.6 are likely

not specific to the unique sponge ridge geometry investigated.

In figure 3.8, we report results for designs comprising an hollow cylindrical with small pores.

For this case, we find that large cyclic lift forcing acting on the structure exists only for the model

without ridges (figure 3.8(a)). We also note that for the Bidirectional and Sponge ridge geometries,

the lift coefficient does not average to zero, since the ridges break the flow symmetry and bias

the lift coefficient to a particular direction (see figure B.10 for more information). By taking the

data from the lift coefficient and computing the PSD, we observe that for this level of biologically

relevant porosity, prominent vortex shedding still exists behind the cylindrical baseline geometry

(figure 3.8(c)), while all three models with ridges are capable of suppressing vortex shedding. As

such, these results demonstrate that for φs ≈ . , the introduction of helical ridges is sufficient

to suppress vortex shedding regardless of the specific ridge arrangement. However, although all

three ridge geometries suppress the vortices over the long term, it is important to note that some

geometries provide a faster dissipation mechanism than others. As shown in figure 3.8(b), the Uni-

directional and Bidirectional ridge designs exhibit cyclical lift forcing as soon as flow is initiated,

indicating an early onset of vortex shedding, and whose amplitude is partially dissipated over time.

The Sponge ridge design, in contrast, transitions much earlier to a steady flow profile with no indi-

cation of cyclical lift forcing. Such rapid suppression of vortex shedding is of biological relevance

to the sponge, since its local environment can be prone to fluctuations in flow velocity depending

on the depth at which it occurs. Finally, the results shown in figure 3.8(d) demonstrate that the
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choice of ridge design has also implications on the drag imposed on the cylindrical structure, with

the Bidirectional design increasing the drag substantially compared to the other ridges geometries.

While the hydrodynamic results reported so far are for Re = (a value relevant to the

natural habitat of the sponge), in figure 3.9, we investigated the effect of other Reynolds numbers

on these observed behaviors. Specifically, we considered Re = and Re = and, due to

the computational complexity of these simulations, compare the hydrodynamic performance of a

cylindrical tube with small pores and sponge ridge design to that of a cylindrical tube with small

pores and no ridges. We find that for both considered Reynolds numbers, the trends observed in

figure 3.8 are unchanged for lift coefficients, shedding frequencies, and drag coefficients.

Finally, in figure 3.10, we report the hydrodynamic results for models with a large surface

porosity (φs ≈ . ), approaching that of a cleaned (bare) sponge skeleton. The results show two

key trends. First, we find that at this level of porosity, the existence of von Kármán vortices is

not prominent for any of the models, as indicated by the lack of cyclic lift forcing acting on the

structures shown in figure 3.10(a) and (b). These results therefore suggest that the introduction

of ridges is unnecessary for this level of porosity and that there exists a transition in the flow for

surface porosities between φs ≈ . and φs ≈ . . Second, the results shown in figure 3.10(c) also

demonstrate that for large surface porosities, the drag coefficient remains dependent on the ridge

arrangements, and that the dependency is similar to that observed in figure 3.8(d) for φs ≈ . .

Beyond the vortex suppression and drag reduction properties of the sponge’s external ridges, we

also investigated their potential role as a mechanism for increasing/redirecting fluid flow through

the sponge for feeding/gas exchange purposes. Towards this end, in figure 3.11(a) and (b), we

report the time averaged flow rate over the area of the cylindrical core (defined as in section 3.6.1)

at Re = for all considered different geometries with a cylindrical core with both small and large
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pores, respectively. These results demonstrate that the flow through the core of the cylinder for the

Sponge design is almost identical to that of the model without ridges, whereas the Unidirectional

or Bidirectional ridges lead to a slight increase. Similar trends are also observed for Re = ,

(figure 3.11(c)) and Re = , figure 3.11(d) in the case of small porosity, suggesting that the

presence of the Sponge ridge design does not offer significant added mass flow through the walls

of the main cylinder across a wide range of flow regimes.

3.7 Conclusion

To summarize, using a combination of finite element simulations and computational fluid mechan-

ics, in this study we explored the potential multi-functionality of the complex network of external

maze-like ridges found in the skeletal system of the marine sponge, Euplectella aspergillum. Us-

ing this integrated approach, we demonstrate that this complex ridge system offers the sponge an

efficient mechanism for rapidly suppressing von Kármán vortex shedding and reducing lift forcing

oscillations (which may be essential for keeping the sponge anchored into the soft sediments of the

sea floor), while at the same time, retaining its skeleton’s mechanical performance. Beyond their

ability to suppress vortex-induced vibrations, which could weaken the attachment point between

the sponge’s holdfast apparatus and its surrounding substrate, the ridges also likely play a critical

role in preventing substrate-associated turbulence and subsequent sediment excavation (see Video

1), as has been demonstrated for other bottom-anchored cylindrical geometries under flow [124,125].

The prevention of sediment transport from the down-stream side of the sponge is likely of criti-

cal importance to the sponge’s survival, since excavation near its holdfast apparatus would also

compromise its ability to remain anchored into the soft sediments of the sea floor.
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To explore the additional benefits of its maze-like organization, we also compared the sponge

ridge geometry to helical strake-based vortex shedding suppression systems commonly employed

for above ground (e.g. antennas, and smokestacks) and underwater (support beams, vertical pipelines)

high aspect ratio cylindrical structures. From these studies, we find that the sponge’s ridge design

can completely suppress vortex shedding, a behavior which differs from that of more symmetrical

helical strake configurations, which either delay shedding downstream (Unidirectional ridge de-

sign) or amplifies the shedding magnitude (Bidirectional ridge design). Further, we demonstrate

that the Sponge ridge design continues to effectively suppress vortex shedding across a wide range

of flow regimes.

While the findings of this study provide new insight into the multi-functionality (mechanical

and hydrodynamic) of the complex external ridges in the skeleton of E. aspergillum, it is important

to note that the flow regimes considered in this study, namely Re ∈ [ , ], are also relevant

for many man-made cylindrical structures including smokestacks, antennas, submerged piping,

and offshore floating platforms. As such, the geometric features identified by this study could

be directly utilized in engineering applications where effective dissipation of vortex shedding is

necessary, and where vortex-induced vibrations are to be avoided.
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4.1 Abstract

Porous materials with well-defined periodicity are commonly encountered in biological and syn-

thetic structures and exhibit a wide range of behaviors, ranging from negative Poisson’s ratios, to

high energy absorption and acoustic damping. Recently, the response of these systems has been

shown to be enhanced by mechanical instabilities that lead to sudden and reversible geometric

transformations. Although buckling induces planar transformations in most of 2D porous metem-

aterials, here we describe the emergence of 3D morphologies triggered by mechanical instabilities

in an elastomeric block with tilted cylindrical holes. As a proof of concept, we demonstrate that

these structures can be leveraged to tune surface properties including friction and light reflection,

thus providing a new experimental platform for investigating deformation-dependent dynamics for

tribological and optical applications.

4.2 Introduction

Recently, instabilities have been recognized as a feature to be harnessed rather than avoided [126].

For example, mechanical metamaterials can be designed to trigger instabilities upon loading, which

can lead to dramatic changes in geometry and create functionality [39,127,128]. Among numerous de-

signs, one of the simplest is a block of elastomer with a square array of cylindrical holes [81,129,130].

When this structure is compressed in the plane perpendicular to the long axis of the holes, the

beam-like ligaments separating them buckle cooperatively. Such instabilities lead to a sudden

transformation of the circular holes into mutually orthogonal ellipses. This reversible morpholog-

ical change has been harnessed to realize structures with unusual mechanical properties, such as
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negative Poisson’s ratio [82] and negative swelling ratio [131], which can function as phononic and

photonic switches [107,132–135], color displays [135], and soft robots capable of grasping and walk-

ing [71].

While the geometric transformations induced by buckling in 2D porous metamaterials are typ-

ically planar, buckling can also trigger the formation of out-of-plane 3D patterns. For example, a

bilayer system comprising a thin elastic film covering a pre-strained soft substrate can undergo a

buckling instability, leading to the formation of complex wrinkle patterns [136,137]. These wrinkles

have been investigated for applications ranging from stretchable electronics [138,139] and diffrac-

tion gratings [137,140], to reversibly adhesive pads [141] and tunable flow control in microfluidic de-

vices [142]. Beyond these bilayer systems, mechanical instabilities in kirigami sheets can also result

in out-of-plane deformations that have been exploited to realize morphable structures [91,143–145] or

the skin of snake-inspired crawling actuators [146].

Here, inspired by a tilted cuboid structure that can fold into a 3D configuration [147], we show

that buckling generates complex 3D morphologies in a new porous metamaterial comprising a

square array of tilted cylindrical holes within an elastomeric matrix. We demonstrate that such

buckling-induced 3D deformations can be harnessed to actively control surface properties such as

reflectance and friction, providing new opportunities for the production of tunable light-diffusion

devices and crawling robots. Finally, we show that this concept can be extended to different pe-

riodic arrangements of tilted cylindrical holes, thus providing a new platform to control surface

morphology in flexible structures, along with innovative design rules for the production of smart

surfaces, soft robots, and active facades for architectural applications.

In this study, we investigate a metamaterial conceptually obtained from slicing a block of elas-

tomer, containing a square array of cylindrical holes aligned along the z-axis, at an angle θ with re-
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spect to the xy-plane (figure 4.1(a)). The holes in the gray starting block have a radius Rh = . mm

and center-to-center distance dh, chosen so that the initial porosity is φ = πRh/dh = . , which

provides the structure a large enough hinge thickness to balance the structure’s stiffness and out-

of-plane displacement. The resulting metamaterial has an out-of-plane thickness T = . mm

and elliptical holes on its top and bottom faces (figure 4.1(a)) with major and minor axis of length

Rh/ cos θ and Rh, respectively.
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Figure 4.1:Conceptual visualization and buckling-induced geometric transformations in our
inclined metamaterial. (a) Shown in light green, this structure is derived from conceptually slicing
a block (shown in gray), containing a square array of cylindrical holes, at an angle θ. (b)-(c) pre- and
post-buckling photos of themetamaterial at (b)ΔV/V = and at (c)ΔV/V = − configurations
for samples with θ = ◦ (left) and θ = ◦ (right). Both top and side views are shown. Additional
information on this figure can be found in Supplementary Video 1.
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The structures were fabricated from a silicone elastomer (Zhermack Elite Double 32) utilizing a

molding approach, and hydraulic actuation was employed to load the structures, while minimizing

boundary effects. To achieve this behavior, the metamaterial was made air/water-tight by covering

its top and bottom faces with thin elastomeric sheets (with thickness of ∼ . mm). A single pres-

sure input actuation was achieved by connecting the cylindrical cavities via channels and slowly

removing a ΔV volume of water through a syringe pump (see sections C.1 to C.3 and figures C.1,

C.2 and C.4 for details on geometry, fabrication, and experimental testing).

In figure 4.1(b)-(c), we show photos of the metamaterial with θ = ◦ and ◦ for ΔV/V =

(initial configuration - figure 4.1(b)) and ΔV/V = − (figure 4.1(c)), where V denotes the total

volume of the holes in the initial (non-evaucated) configuration. As expected [71], in the negative

pressure regime, the ligaments separating the cavities buckle cooperatively, triggering a sudden

transformation of the circular holes into a periodic pattern of alternating, and mutually orthogonal,

elliptical holes. For the structure with θ = ◦, such transformations were accompanied by the

formation of a periodic 3D pattern on its initially flat outer surfaces, suggesting that the angle θ

may be exploited to trigger the formation of out-of-plane textured geometries.

To better understand the effect of θ on the post-buckling geometry of this class of metamaterials,

we fabricated and characterized examples with θ = ◦, ◦, ◦ and ◦. The water-filled structures

were connected to a syringe pump and the incompressible fluid was slowly removed from the

cavities, while monitoring the evolution of the pressure using a pressure sensor (MPX5050DP,

NXP USA Inc)(see section C.3.1 for details). The results reported in figure 4.2(a) demonstrate

that all considered metamaterials are characterized by three distinct regions: (i) a linear elastic

regime; (ii) a stress plateau following thereafter; and (iii) stiffening by further deflation. While in

the initial linear regime the holes homogeneously contracted and the samples remained flat, the
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sudden departure from linearity to a plateau pressure was caused by the buckling of the ligaments.

Remarkably, for θ ̸= ◦ the instability triggered themorphing of the sample’s surfaces and produced

3D patterns with similar geometric features, whose sizes varied with θ (see figure C.6 for more

information).

Figure 4.2: Experimental characterization of out-of-plane metamaterial buckling. (a) Pressure-
volume relationship for the four different θ’s considered (θ= ◦, ◦, ◦, ◦). Each sample was tested
independently three times and the results from each test are reported as separate lines. (b) Normal-
ized out-of-plane deformationmeasurements of the samples, obtained from 3D surface scans. The
inset specifies the four regions (denoted bywhite boxes) used for measuring δ. Additional information
on this figure can be found in Supplementary Video 2.
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To quantify the magnitude of the associated out-of-plane deformation, we used a hand-held

3D scanner (Artec Space Spider, Artec Studio 14.1.1.75) and recorded the buckled surface profile

at ΔV/V = − (see figure C.7 and section C.3.2 for more details). For these measurements, we

focused on the four central unit cells of the sample (see dashed rectangles in figure 4.2(b) inset) and

used a custom Python script to segment and detect the amplitude of the out-of-plane displacement

in each of the four regions, δ = max(uz) − min(uz). In figure 4.2(b) we report the average of the

four measured values of δ for each metamaterial. These results clearly show that the out-of-plane

deformation of the structures becomes more accentuated as θ increases from ◦ to ◦.

Since the buckling-induced textures have identicalmorphologies, but an out-of-plane amplitude

that monotonically increases with θ, in the following sections, we only consider the metamaterials

with θ = ◦ and θ = ◦. These two configurations provide the maximum difference in 3D defor-

mation, and therefore represent the best candidates for demonstrating how the buckling-induced

textures can be leveraged to modulate additional functionalities of these metamaterials, such as

light reflection and friction.
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Figure 4.3: Buckling-induced tunable light reflection. (a) Photograph of the experimental setup outlin-
ing the sample location, light source, and pattern collection screen. (b) Evolution of themeasured directional
reflectance RΩ (normalized bymax(RΩ)) as a function ofΔV/V for samples with θ = ◦ and θ = ◦. (c) Snap-
shots obtained during the deflation process for the θ = ◦ (left column) and θ = ◦ (right column) samples
atΔV/V = (top row) andΔV/V = − (bottom row). (d) Ray tracing simulations showing the directionality
of light reflection for θ = ◦ (left column) and θ = ◦ (right column) samples atΔV/V = (top row) and
ΔV/V = − (bottom row). For reference, the initial periodic reflected light pattern is due to small surface de-
pressions in the non-evacuated structure. Additional information on this figure can be found in Supplementary
Video 3.

To investigate buckling-induced tunable light reflection of our metamaterial, we turned its sur-

face into a mirror by mixing gold paint with the silicone elastomer used for casting the thin mem-

branes that formed the top and bottom surfaces of the structure. For the experiments, which were

conducted in a dark room, we positioned a goose-neck halogen lamb at a distance of 9.5 cm from

the sample and at an incident angle of ◦ relative to the metamaterial’s surface (see section C.3.3

for details). While filled with water, we slowly evacuated the structure and monitored the light

reflected onto a white panel positioned at a distance of 11 cm from the sample (see figure 4.3(a)).

As shown in figure 4.3(c), while for ΔV/V = , the amount of light reflected is similar for both

the samples with θ = ◦ and θ = ◦, at ΔV/V = − it is substantially lowered for the θ = ◦

structure. To quantify this light scattering behavior, we converted the recorded projection screen
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images to gray-scale, and measured the brightness of all pixels in this region of interest (denoted by

the dashed red rectangle in figure 4.3(a)) and calculated the directional reflectance RΩ as the mean

of these values (see section C.3.3 for details). The results shown in figure 4.3(b) indicate that for

ΔV/V = − the normalized directional reflectance, RΩ/max(RΩ), for the θ = ◦ structure is 32%

lower than that for the θ = ◦ structure. This stark difference in performance is due to the fact that

upon buckling of the top surface of the θ = ◦ metamaterial, the incident rays are scattered in mul-

tiple directions, such that only few of them reach the white panel. This phenomenon is also clearly

visible in simulations conducted using the Ray Tracing Module in COMSOL (see section C.4.2 for

details). The numerical results reported in figure 4.3(d) show that (i) for ΔV/V = (i.e. when the

top surface is flat) the metamaterial acts as a planar mirror irrespective of θ and reflects all rays at

◦ angle; (ii) for ΔV/V = − the θ = ◦ sample, on average, still reflects the incidents rays at a ◦

angle from the sample surface, with small deviations due to small and local perturbations of the

surface smoothness; (iii) for ΔV/V = − the θ = ◦ sample reflects the light rays at vastly differ-

ent angles from the sample surface – resulting in a diffuse distribution of light reflected in multiple

directions. While wrinkling patterns have been proposed to create microlenses with variable focal

length [136,148] and achieve dynamic changes in optical transmittance and diffraction patterns [149],

our results show that buckling in porous metamaterials also provides opportunities to control the

specular and diffuse optical scattering, opening avenues for tuning sunlight reflection in architec-

tural applications or the encryption of messages and graphics that reversibly appear and disappear

due to actuation. [149]

Changes in surface morphology can also translate into changes in frictional properties of a

structure, and to demonstrate this behavior, we placed our metamaterial on an acrylic plate, con-

taining a layer of masking tape (Duck 240883) to reduce surface friction. The acrylic plate was
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then tilted, and the smallest tilting angle for which the sample began sliding, φcr, was recorded.

From these measurements, we calculated the coefficient of static friction μ = tanφcr as a function

of ΔV for each geometry. Since μ is determined by the interaction between the substrate (tape)

and the surface of the metamaterial, we found that μ remains constant when varying ΔV/V and/or

θ for each sample. For example, if we consider the sample with θ = ◦ (see figure 4.4(a), first

column), we observed that the structure has the same tilting angle φcr in both the initial and the

buckled configuration (figure 4.4(b), first column) - a feature that is also observed for the sample

with θ = ◦ (see figure C.9). As such, the friction coefficient is μ ≈ . for any ΔV/V (gold bars

in figure 4.4(c)).
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Figure 4.4: Frictional measurements for our inclined metamaterial. (a) Photographs showing the bottom
surface at theΔV/V = (top row) andΔV/V = − (bottom row) states of samples with (from left to right): (i)
θ = ◦ and no acrylic features; (ii) θ = ◦ and acrylic spheres; (iii) θ = ◦ and acrylic spheres; (iv) θ = ◦

and acrylic plates. (b) Photographs qualitatively showing the effect of the buckling-inducedmorphology on
the tilting angle for which the sample began to slide, ϕcr. (c) Coefficient of friction for the different samples as a
function ofΔV/V . See figures C.8 to C.10 for additional information and results. Additional information on this
figure can be found in Supplementary Video 4.

Beyond the ability of these metamaterials to generate large-scale out-of-plane surface geome-

tries, this behavior also offers the opportunity to expose/retract a third material, leading to a tunable
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μ. For example, if we simply attach small acrylic spheres in the areas of the surface that retract

during buckling (figure 4.4(a), second column), such elements (i) dominate the contact properties

in the initial configuration and (ii) disengage with the substrate under vacuum, which then comes in

contact with the the elastomer. This behavior enables switching from an acrylic-tape to a elastomer-

tape interaction. As such, the frictional coefficient between the metamaterial and the substrate is

low prior to buckling (with μ ≈ . ) and progressively increase as the buckling-induced pattern

becomes more accentuated, eventually reaching μ ≈ . (pink bars in figure 4.4(c)). Note that in

this structure, the changing in frictional behavior is solely due to the emergence of the 3D pattern

induced through buckling. In fact, if we attach the same acrylic spheres to the surface of the sample

with θ = ◦, which does not exhibit a 3D pattern upon air evacuation (figure 4.4(a), third column),

we find that μ ≈ . for both the initial and the buckled configuration (blue bars in figure 4.4(c))

as the spheres are always in contact with the substrate.

An effective friction coefficient μ that decrease as a function of ΔV/V is also achievable. By

swapping the spheres with acrylic plates (figure 4.4(a), fourth column) coated by a thin layer of

silicone adhesive (Sil-Poxy, Smooth-On), one can obtain a metamaterial with a friction coefficient

that decrease upon air evacuation. Initially, the silicone adhesive is in contact with the substrate

and μ ≈ . . However, when the buckling-induced 3D pattern forms, the acrylic plates rotate and

their edges (which are not coated) come in contact with the substrate, reducing μ to approximately

0.2 (dark red bars in figure 4.4(c)).

To demonstrate this effect, we created a soft crawling robot that harnesses the switchable fric-

tional properties of our metamaterial to achieve locomotion. The robot comprises three metama-

terial modules (see figure 4.5(a)). The first module is characterized by θ = ◦ and has spheres

attached to its surface. The second module also has spheres attached to its surface, but with θ = ◦.
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Finally, the third module (θ = ◦) is rotated 180 degrees relative to the first, and contains acrylic

plates instead of spheres. During assembly, the first and third modules of the robot were connected

to the same pressure source, which allowed us to provide the same negative pressure at the front

and the rear of the robot, and to reset it to atmospheric pressure, simultaneously. Moreover, in

order to provide pressure continuity between the first and the second modules, we coupled these

via a short tube (with 1.75 mm diameter).

In the initial configuration (photograph (i) in figure 4.5(b)) the friction coefficient between the

first two modules and the substrate is μ ≈ . , whereas for the third module, is μ ≈ . . However,

upon air evacuation, the coefficient of friction varies differently for each of the three modules

(see figure 4.4(c)). Note that, for simplicity, in this demonstration we use a pressure controlled

air vacuum line to power the robot, but the effect of fluid compressibility on the response of the

system was negligible.
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Figure 4.5: Design elements and performance of our soft robotic crawler. (a) Photograph showing the
bottom of the soft robotic crawler. (b) Displacement of the center of mass of the first module of the crawler,u,
normalized by the initial length of the crawler, Lrobot, (blue line) and source pressure, Psource, (magenta line) ver-
sus time during a cycle. The center of mass provides information on the average displacement of the first mod-
ule of the robot, which is obtained by averaging the displacement of both edge points for each frame. (c) Exper-
imental snapshots of our soft crawler at t= (i) 0, (ii) 1.5, (iii) 9.5, (iv) 11 and (v) 20 s. The distance traveled during
one full motion cycle (between T and T ) in indicated by the locations of the two red dotted lines. Additional
information on this figure can be found in Supplementary Video 5.
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From analyzing the pressure-volume relationship reported in figure 4.2(a), we predict that the

two modules with θ = ◦ buckle first, followed by the module with θ = ◦, in the negative

pressure regime. This sequence of events is confirmed through our experimental testing, which

demonstrates that when a negative pressure pulse is provided to the robot (with magnitude Psource =

kPa for t = s), we see that the first and third modules with θ = ◦, which are connected to the

same vacuum line, buckle before the secondmodule with θ = ◦ (snapshot (ii) in figure 4.5(b)). The

emergence of the 3D pattern triggered by buckling leads to an increase in friction (from μ ≈ .

to μ ≈ . ) for the first module, which becomes an anchoring point. At the same time, the third

module loses its ability to grip (from μ ≈ . to μ ≈ . ), which facilitate its forward sliding.

Finally, the second module buckles (snapshot (iii) in figure 4.5(b)). Since buckling only leads to

its contraction but does not change its frictional properties, this module merely acts as an stroke

amplifier and gets pulled forward. As a result, at the end of complete air evacuation the robot

advances on average by 9.3±0.4 mm (figure 4.5(c)).

In the second step of the gait cycle, we release the robot from the vacuum, by simultaneously

opening the first and the third modules to the atmosphere. According to the pressure-volume rela-

tionship reported in figure 4.2(a) the second module (with θ = ◦) should unbuckle first, followed

by the θ = ◦ samples. However, in our experiments the first and third modules (with θ = ◦)

unbuckle immediately (snapshot (iv) in figure 4.5(b)), due to their proximity to the outlets at at-

mospheric pressure. The relaxing of the 3D pattern on the surface of the first module removes the

anchoring point, as the friction decreases from μ ≈ . to μ ≈ . . At the same time, the third

module regains grip, becoming the new anchoring point. Successively, when the middle mod-

ule unbuckles (snapshot (v)) the robot slides forward again, advancing on average by additional

8.7±0.4 mm (figure 4.5(c)). As a result, at the end of the complete gait cycle, the crawling robot
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advances on average by 18 mm (figure 4.5(c)).

To summarize, in the present work we investigated the properties of a metamaterial consisting

of an elastomeric block with a square array of tilted cylindrical holes. We discovered that the hole

tilting angle (θ) plays a major role in the out-of-plane buckling behavior and the emergence of 3D

morphologies on the exposed surfaces of the samples. Furthermore, we demonstrated how these

patterns can be utilized to control surface properties (including light reflectance and friction) by

means of a simple hydraulic or pneumatic actuation.

Although throughout this study, we focused on a square array of holes, this concept can be also

extended to different hole arrangements. To explore this avenue, we used Finite Element analyses

to simulate metamaterials with different periodic distributions of cylindrical holes (more details of

which can be found in section C.4.1). Specifically, we focused on arrangements that have been

previously shown to reversibly switch between expanded (i.e. with circular holes) and compact

(i.e. with elongated, almost fully closed elliptical holes) configurations for θ = ◦ [150]. In full

agreement with previous studies [150], we find that when the holes’ axes are perpendicular to the

top and bottom surfaces, buckling triggers a planar geometric transformation (see figure C.5). In

contrast, as shown in figure 4.6, for θ = ◦, all geometries exhibit different buckling-induced

out-of-plane deformation patterns. These results suggest that our approach can be used to achieve

more complex and targeted out-of-plane buckling behaviors, providing a new modular platform

that enables the design of the next generation of active and transformable surfaces.
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Figure 4.6:Out-of-plane buckling behaviors for different hole patterns. Post-buckling finite element
results for three hole arrangements with θ = ◦ atΔV/V = − . For the triangular, rhombitrihexagonal, and
trihexagonal holes arrays (the undeformed geometry is shown in the insets), we illustrate the normalized out-
of-plane displacement, uz/Rh. (b) Normalized out-of-plane deformationmeasurements obtained from Finite
Element simulations atΔV/V = − for the triangular, rhombitrihexagonal, and trihexagonal geometries, and
the square arrangement from figure 4.1. Additional information on this figure can be found in Supplementary
Video 6.
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5
Additional Work
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5.1 Band Gaps in Acoustic Networks

5.1.1 Publication

Harnessing Geometric Frustration to Form Band Gaps in Acoustic Networks

Pai Wang, Yue Zheng,Matheus C. Fernandes, Yushen Sun, Kai Xu, Sijie Sun, Sung Hoon Kang,

Vincent Tournat, Katia Bertoldi

Physical Review Letters, Volume 118, Issue 8, EID 084302, February 2017

doi:10.1103/PhysRevLett.118.084302

5.1.2 Abstract

Wedemonstrate both numerically and experimentally that geometric frustration in two-dimensional

periodic acoustic networks consisting of arrays of narrow air channels can be harnessed to form

band gaps (ranges of frequency in which the waves cannot propagate in any direction through the

system). While resonant standing wave modes and interferences are ubiquitous in all the analyzed

network geometries, we show that they give rise to band gaps only in the geometrically frustrated

ones (i.e. those comprising of triangles and pentagons). Our results not only reveal a new mech-

anism based on geometric frustration to suppress the propagation of pressure waves in specific

frequency ranges, but also opens avenues for the design of a new generation of smart systems that

control and manipulate sound and vibrations.
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5.2 Heart Valve

5.2.1 Publication

A geometrically accommodating heart valve replacement

Sophie C. Hofferberth, Mossab Y. Saeed, Lara Tomholt, Matheus C. Fernandes, Christopher J.

Payne, Karl Price, Gerald R. Marx, Jesse J. Esch, David W. Brown, Jonathan Brown, Peter E.

Hammer, Richard W. Bianco, James C. Weaver, Elazer R. Edelman, Pedro J. del Nido

Science Translational Medicine, Volume 12, Issue 531, eaay4006, February 2020

doi:10.1126/scitranslmed.aay4006

5.2.2 Abstract

While congenital heart valve disease has life-threatening consequences that warrant early valve

replacement, the development of a growth-accommodating prosthetic valve has remained elusive,

and as such, thousands of children continue to face multiple high-risk open-heart operations to re-

place outgrown valves. Here, we demonstrate a biomimetic prosthetic valve that is size-adjustable

to accommodate somatic growth and structural asymmetries within the heart. Inspired by the hu-

man venous valve, whose geometry is optimized to preserve functionality across a wide range

of constantly varying volume loads and diameters, our geometrically accommodating synthetic

bileaflet valve analog exhibits similar adaptability to dimensional and shape changes. Benchtop

and acute in vivo experiments validated design functionality, and in vivo survival studies in a

growing animal model demonstrated mechanical valve expansion to accommodate growth. As

73

http://doi.org/10.1126/scitranslmed.aay4006


illustrated in this work, dynamic size adaptability with preservation of unidirectional flow in pros-

thetic valves thus offers a new paradigm of care for the treatment of heart valve disease.

5.3 Tunable Materials

5.3.1 Publication

Tunable infrared transmission for energy efficient pneumatic building façades

Lara Tomholt, Olga Geletina, Jack Alvarenga, Anna V. Shneidman, James C. Weaver,Matheus C.

Fernandes, Santiago A. Mota, Martin Bechthold, Joanna Aizenberg

Energy and Buildings Volume 226, November 2020, 110377

doi:10.1016/j.enbuild.2020.110377

5.3.2 Abstract

Thermal regulation of buildings in climates with daily and seasonal weather changes can prove

challenging and result in high building energy consumption. While adaptable façades with tunable

infrared transmitting properties would be able to modulate solar transmittance through the build-

ing envelope and as such increase energy efficiency, available technologies are often expensive,

relatively complicated, and challenging to implement in a lightweight form factor. Motivated by

these limitations, this report presents a novel tunable light-modulating technology for energy effi-

cient pneumatic façades in the form of polydimethylsiloxane (PDMS) film with a thin gold surface

coating. Sequential stretching and relaxing of this film results in strain-induced microscale surface

cracks that can significantly modulate both visible and near infrared light transmission and conse-

quently the material’s solar heat gain coefficient (SHGC). The material’s tunability has shown a
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significant potential to reduce building energy use, as assessed with building simulation software.

The technology offers additional advantages for light modulation in pneumatic façades including

real-time operation, ease of implementation and control, and predictable performance. Façade

design guidelines for the integration of the infrared regulating film into ethylene tetrafluoroethy-

lene (ETFE) building envelopes and climate suitability are described, and a critical evaluation of

material durability, optical clarity, and material costs are provided.

5.4 Brittle Star Arm Kinematics

5.4.1 Publication

The structural origins of brittle star arm kinematics: An integrated tomographic, additive man-

ufacturing, and parametric modeling-based approach

Lara Tomholt, Larry J. Friesen, Daniel Berdichevsky, Matheus C. Fernandes, Christoph Pierre,

Robert J. Wood, James C. Weaver

Journal of Structural Biology, Volume 211, Issue 1, 107481, July 2020

doi:10.1016/j.jsb.2020.107481

5.4.2 Abstract

Brittle stars are known for the high flexibility of their arms, a characteristic required for locomotion,

food grasping, and for holding onto a great diversity of substrates. Their high agility is facilitated

by the numerous discrete skeletal elements (ossicles) running through the center of each arm and

embedded in the skin. While much has been learned regarding the structural diversity of these os-

sicles, which are important characters for taxonomic purposes, their impact on the arms’ range of
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motion, by contrast, is poorly understood. In the present study, we set out to investigate how ossicle

morphology and skeletal organization affect the flexibility of brittle star arms. Here, we present the

results of an in-depth analysis of three brittle star species (Ophioplocus esmarki, Ophiopteris papil-

losa, and Ophiothrix spiculata), chosen for their different ranges of motion, as well as spine size and

orientation. Using an integrated approach that combines behavioral studies with parametric mod-

eling, additive manufacturing, micro-computed tomography, scanning electron microscopy, and

finite element simulations, we present a high-throughput workflow that provides a fundamental

understanding of 3D structure-kinematic relationships in brittle star skeletal systems.

5.5 Beetle Structural Color

5.5.1 Publication

Tough color: The functional hierarchy of flower beetles’ cuticle prioritizes optics overmechanics

Zian Jia, Matheus C. Fernandes, Zhifei Deng, Ting Yang, Qiuting Zhang, Alfie Lethbridge, Jie

Yin, Jae-Hwang Lee, Lin Han, James C. Weaver, Katia Bertoldi, Joanna Aizenberg, Mathias Kolle,

Pete Vukusic, Ling Li

Proceedings of the National Academy of Sciences of the United States of America, Volume 118,

Issue 25, June 2021

doi:10.1073/pnas.2101017118

5.5.2 Abstract

Biological systems have a remarkable capability of synthesizing multifunctional materials that are

adapted for specific physiological and ecological needs. When exploring structure–function rela-

76

http://doi.org/10.1073/pnas.2101017118


tionships related to multifunctionality in nature, it can be a challenging task to address performance

synergies, trade-offs, and the relative importance of different functions in biological materials,

which, in turn, can hinder our ability to successfully develop their synthetic bioinspired counter-

parts. Here, we investigate such relationships between the mechanical and optical properties in

a multifunctional biological material found in the highly protective yet conspicuously colored ex-

oskeleton of the flower beetle, Torynorrhina flammea. Combining experimental, computational,

and theoretical approaches, we demonstrate that a micropillar-reinforced photonic multilayer in

the beetle’s exoskeleton simultaneously enhances mechanical robustness and optical appearance,

giving rise to optical damage tolerance. Compared with plain multilayer structures, stiffer verti-

cal micropillars increase stiffness and elastic recovery, restrain the formation of shear bands, and

enhance delamination resistance. The micropillars also scatter the reflected light at larger polar

angles, enhancing the first optical diffraction order, which makes the reflected color visible from

a wider range of viewing angles. The synergistic effect of the improved angular reflectivity and

damage localization capability contributes to the optical damage tolerance. Our systematic struc-

tural analysis of T. flammea’s different color polymorphs and parametric optical and mechanical

modeling further suggest that the beetle’s microarchitecture is optimized toward maximizing the

first-order optical diffraction rather than its mechanical stiffness. These findings shed light on

material-level design strategies utilized in biological systems for achieving multifunctionality and

could thus inform bioinspired material innovations.
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5.6 Soft Membrane Design via Machine Learning

5.6.1 Publication

Inverse design of soft membranes through machine learning

Antonio Elia Forte, Emilia Zaria, Lishuai Jin, Paul Hanakata, Ahmad Zareei,Matheus C. Fernan-

des, Laura Sumner,Jonathan Alvarez, Christopher Payne, and Katia Bertoldi.

Proceedings of the National Academy of Sciences of the United States of America, In Preparation

5.6.2 Abstract

Across fields of science, researchers have increasingly focused on designing soft devices that can

shape-morph and achieve functionality upon actuation. However, building such tools involves un-

derstanding of complex non-linear mechanics and inverse design capabilities. A powerful method

to solve the backward deformation problem can be tackled with classic machine learning tools. In

this study we present a simple and efficient platform to design pre-programmed 3D shapes starting

from two-dimensional planar composites membranes. By training a custom built autoencoder with

a small set of finite element simulations, we are able to obtain the optimal design for a pixelated

2D elastomeric membrane, which can morph to a target shape upon inflation. We show how these

devices can be used for mechanotherapy applications, by stimulating certain areas whilst avoiding

prescribed locations, but the potential of the method can be employed at multiple scales and across

different applications without loss of generality.
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5.7 Soft Robot Sensor Using Machine Learning

5.7.1 Publication

Soft Robot Gripper with Camera-less Object Classification using Machine Learning

Matheus C. Fernandes, Andrew Gross, Kevin Li, Nikolaos Vasios, James C. Weaver, Katia

Bertoldi.

Unpublished.

5.7.2 Abstract

Current automation and soft robotic arms use a collection of cameras and sensors to grab and iden-

tify inventory objects in manufacturing as well as distribution centers. However, due to sensing

limitations, these systems may not be able to classify objects based on features such as compliance,

texture and shape. In this project we explore a new and exciting avenue to classify gripped objects

via compliance, curvature and pressure data from embedded sensors in combination with machine

learning algorithms. We introduce a soft pneumatic actuator that is able to conform to a desired

objects shape and size while continuously providing sensor data from multiple force sensors, cur-

vature sensors and fluid pressure sensors. By acquiring data for multiple pre-classified objects, we

develop a training database that is used in generative classification machine learning model. Using

the model, we are than able to predict the classification new objects. Furthermore, we validate our

model by testing a set of objects for which the classes are known and use similar untrained items

to understand the limitations of the model and machinery.
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6
Conclusions

“C -

.”

– J J. M
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This dissertation illustrates two effective approaches to designing structures and advancing

material science development by observing nature and biology. In the first approach, working in-

tandem with biology, we take inspiration from the deep-sea glass sponge Euplectella aspergillum

to improve the efficiency of a class of truss structures used in modern engineering applications.

Using a combination of numerical simulations and experiments, we found that the sponge design

has a superior strength-to-weight efficiency over other comparable designs (chapter 2). Further-

more, we developed an optimization algorithm, based on our numerical models, that surveys the

design space and finds the optimal geometric configuration of trusses. The results from the al-

gorithm suggest that the sponge’s skeletal architecture is nearly identical to the optimum output

design. The mechanical properties of the sponge-inspired lattice thus have implications for improv-

ing the performance of a wide range of truss systems, with applications ranging from large-scale

infrastructure such as bridges and buildings to small-scale medical implants. Since this improved

efficiency is introduced geometrically, the structure’s scale and material is unlikely to impact its

performance.

Using a combination of mechanical and hydrodynamic simulations of the sponge’s macro-scale

geometry, my colleagues and I were able to shed light on the structure-function relationship of the

different components of the sponge’s structural hierarchy (chapter 3). We demonstrated that the

sponge’s ridge architecture offers lessons on how to effectively suppress hydrodynamic vortex

shedding by using its unique and regular ridge pattern that tapers in height from the bottom (short

ridge near the holdfast) to the top (tall ridge away from the holdfast) of the sponge. Furthermore,

we find that although the ridge height is smaller near the holdfast apparatus, the amount of mate-

rial per unit area remains constant, leading to a thicker relative strut dimension. In our structural

simulations of the sponge we demonstrated that by allocating additional material to the sponge
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core we are able to achieve a more efficient load-bearing structure then if allocated through the

introduction of ridges. These results are consistent with the findings of chapter 2, where we show

that its diagonally reinforced truss design is optimized for load-bearing capabilities.

While the findings of this study provide new insights into themulti-functionality of the complex

external ridges in the skeleton of the sponge, our discoveries are also relevant for many man-made

cylindrical structures where hydrodynamic shedding or structural rigidity play an important role.

This study exemplifies yet another instance of working in-tandem with biology to improve the

engineering of structures and their interaction with the natural environment.

The second approach, working in-parallel with nature, is illustrated in the third project of this

dissertation, where we utilize porous materials, found abundantly in nature, as the means to create a

metamaterial that exhibits unexpected structural properties harnessed to accomplish complex tasks

(chapter 4). In this chapter, we showed that buckling generates complex 3Dmorphologies in a new

porous metamaterial comprising a square array of tilted cylindrical holes within an elastomeric

matrix. We demonstrate that such buckling-induced 3D deformations can be harnessed to actively

control surface properties such as reflectance and friction, providing new opportunities for the

production of tunable light-diffusion devices and the creation of a new type of locomotion for plate-

shaped soft robots. These results suggest that our approach can be used to achieve more complex

and targeted out-of-plane buckling behaviors, providing a new modular platform that enables the

design of the next generation of active and transformable surfaces.
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6.1 Outlook

We can find many examples in our daily life where human-made technology can be traced to na-

ture’s inventions that were used as inspiration. Besides stronger structures with hydrodynamic

capabilities or soft robots able to induce crawling, there are numerous other inventions and mecha-

nisms that one can be inspired to develop using the same biomimicry techniques. Onemay consider

deployable structures that can include tents and other large surface-foldable structures as well as

gossamer antenna structures and deployable living quarters for space applications.

While the concept of resilient lattice architecture is many centuries old and dates back to

Alexander Graham Bell and Buckminster Fuller, today’s technology allows for lattices to be made

small enough to exploit their nano-scale properties, allowing humans to develop a hierarchical

approaches to material science. [151,152] Although at this scale size effects can tremendously alter

mechanical, magnetic, thermal, and electrical properties of a material, nature has been found to op-

erate at these scales thus paving potential pathways to mitigate such complications. [153–161] There

are many areas where nature is superior, and one of them is its ability to create structures that use

the minimum resources to produce maximum results as to be fitted for the environment in which

they need to operate, independent of scale.

The possibilities in seeking inspiration from nature and biology to solve the most complex

engineering problems are endless. In order to describe a biological material, it is necessary to

understand the various hierarchical levels of a structure, from the nano- and meso-scale all the

way to the macro-scale. On each of these scales, within the structural hierarchy of a biological

species, there are endless opportunities for discovery and inspiration to work both in-parallel and

in-tandem with nature.
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6.2 Personal Remarks

“I want to become a super engineer” were the opening words of my Harvard admissions personal

statement. These words meant a lot to me back then, and they still mean a lot to me to this day.

Years later, the experiences gained through my research have provided me the realization that the

definition of a ‘super engineer’ extends beyond being technically savvy. Moreover, it also en-

compasses humility, the ability to convey complex ideas to a non-technical audience, effectively

collaborating with others across disciplines, and, most importantly, thinking critically and asking

the right questions. This skill set is something I could have never achieved had I not worked on

projects at the forefront of multi-disciplinary innovation. By collaborating with a diverse and bril-

liant group of people, I have learned that becoming a ‘super engineer’ is not a binary achievement,

but rather a lifetime purpose of learning and development.
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A.1 Structure of the Hexactinellid sponge Euplectella aspergillum

The periodic structures investigated in this study are inspired by the skeleton of the hexactinellid

sponge Euplectella aspergillum, which throughout its lifespan (figure A.1) progresses from a easily

deformable skeletal lattice (flexible phase), consisting of loosely associated individual skeletal

elements, through various stages of skeletal consolidation, ultimately resulting in the mature form

(rigid phase), shown in figure 2.1 [7,20,110]. In this section, we provide a detailed description of the

sponge’s geometry and measured dimensions.

Figure 2.1 shows a photograph of the entire skeleton of a representative specimen of E. as-

pergillum, and its intricate, cylindrical cage-like structure (20 to 25 cm long, 2 to 4 cm in diame-

ter) [18]. The surface of the cylinder incorporates a regular square lattice composed of a series of

cemented vertical and horizontal struts, consisting of bundles of individual spicules, each with a

circular cross-section. The cell spacing between horizontal and vertical struts is L ≈ . mm [6],

while the diameter is Dnd ≈ . mm [6]. In addition to the horizontal and vertical struts, there is an

additional set of diagonal elements, intersecting in a manner that creates a series of alternating open

and closed cells, reminiscent of a checkerboard pattern [6]. Although these diagonal elements are

not as ordered as the horizontal and vertical ones, they can be approximated as two diagonal struts

that are offset from the nodes (vertex joints between non-diagonal elements) and form roughly oc-

tagonal openings (figure A.2). To estimate the volume ratio between diagonal and non-diagonal

elements, we acquired digital photographs of the sponge skeleton and performed image segmen-

tation to segregate the projected area of the vertical/horizontal and diagonal spicules. For these

measurements, and to minimize shadowing artifacts during image thresholding, sponge skeleton

regions were selected that did not contain surface ridges. In total 4 different sponge skeletons were
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investigated and 25 different lattice cells from each specimen were analyzed. Using this approach,

the projected area ratio of non-diagonal to diagonal elements was found to be And/Ad ≈ . ± . .

Note that here, and in the following, the subscripts d and nd are used to indicate the diagonal and

non-diagonal (i.e. horizontal and vertical) elements, respectively.

Finally, it should also be noted that the sponge is reinforced by external ridges that extend

perpendicular to the surface of the cylinder and spiral the cage at an angle of ∼ o. However, in

this paper we do not report the effects of these ridges on its mechanical performance, which will

be addressed elsewhere.
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Figure A.1:Historical illustration (left) andmodern photograph (right) illustrating the flexible and rigid
growth stages that occur during skeletal maturation in several hexactinellid sponges in the genus Euplectella.
Left image adapted from Schulze [7].
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A.2 Our four lattice designs

In this study, we focused on four different lattice configurations (Designs A, B, C, and D) con-

strained to deform in an in-plane setting only. In an effort to conduct a fair performance com-

parison between the different geometries, all four lattices were designed to contain the same total

volume of material and a fixed volume ratio between non-diagonal and diagonal elements (chosen

to match the sponge geometry) for Designs A, B, and C. Two different shapes were considered

for the cross-section of the struts: circular and rectangular. For the circular cross-section case, we

denoted the diameters of the non-diagonal (i.e. horizontal and vertical) and diagonal struts in the

α-th design as Dα,nd and Dα,d, respectively, and neglected out-of-plane buckling. For the rectan-

gular cross-sections, we denoted the in-plane thickness of the non-diagonal (i.e. horizontal and

vertical) and diagonal struts in the α-th design as Tα,nd and Tα,d, respectively, and chose the depth H

to avoid out-of-plane deformation (i.e. we chose the depth over thickness ratio sufficiently large

to constrain in-plane deformation). Finally, it is important to note that the slenderness of the non-

diagonal members in the α-th design ∈ [A,B,C] was chosen as

Dα,nd

L
= . , and Tα,nd

L
= . , (A.1)

for the case of the circular and rectangular cross-section, since this was the aspect ratio measured

for the sponges (section A.1).

In the subsequent sections, we describe in detail the unit cells for four different designs, and

provide the derivations for the characteristics of each geometry cross-section. To derive these

relations, we laid a framework of underlying assumptions, namely:
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• in-plane geometry is uniform and has the same shape (allowing only either thickness or
diameter to change depending on cross-sectional shape) for all elements,

• all diagonal elements have the same in-plane dimension,

• all non-diagonal elements have the same in-plane dimension, and

• area of overlapping beam crossing is negligible and unaccounted for during volume calcula-
tions.

T

H

~L
~L

D

Figure A.2: Unit cell for Design A. Schematics of the unit cell forDesign A (the sponge-inspired lattice). On the
left, we indicate the geometric parameters of this design considering a circular cross-section, while on the right,
we show the geometric parameters of this design considering a rectangular cross-section.

A.2.1 Design A

Design Awas inspired by the sponge’s skeletal architecture and consisted of a square grid reinforced

by a double diagonal support system (figure A.2). Matching what was seen in the natural sponge,

the diagonal elements were assumed to form an octagonal opening on every other cell, such that

they intersect the horizontal and vertical struts at a distance ΔL = L/(
√

+ ) from the nodes, where

L denotes the length of the vertical and horizontal struts.
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Circular cross-section

Assuming that the cross-section of all struts is circular, the projected area and volume for the non-

diagonal (AA,nd and VA,nd) and diagonal (AA,d and VA,d) members are given by

AA,nd = LDA,nd, (A.2)

VA,nd = L

(
π
DA,nd

)
= LπDA,nd (A.3)

AA,d =
√

LDA,d, (A.4)

and

VA,d =
√

L

(
π
DA,d

)
=

√
LπDA,d. (A.5)

Since the projected area ratio of the non-diagonal to diagonal elements in the sponge has been

measured to be
AA,nd

AA,d
= . , (A.6)

by substituting equation A.2 and equation A.4 into the equation above we find that for Design A

DA,nd = .
√

DA,d ≈ DA,d. (A.7)
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Substitution of equation A.7 into equation A.3 and equation A.5 yields

VA,nd

VA,d
=

LπDA,nd√
LπDA,d

=
√

(A.8)

and

VA,T = VA,nd + VA,d = πL(DA,nd +
√

DA,d) = πLDA,nd

(
+ √

)
, (A.9)

where VA,T indicates the total volume of the unit cell for Design A.

Finally, it is important to note that in this study we used Design A as our base model, and thus

constrained the total volume of all the other unit cell designs with circular cross-sections to be

equal to that of Design A, namely,

Vα,d + Vα,nd = VA,T = πLDA,nd

(
+ √

)
, (A.10)

with α =B, C andD. ForDesigns B andC, which comprised diagonal elements, we also constrained

the volume ratio of the non-diagonal to diagonal elements to be the same as in Design A

Vα,nd

Vα,d
=

VA,nd

VA,d
=

√
, (A.11)

with α ∈ B and C.
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Rectangular cross-section

Assuming that the cross-section of all struts is rectangular, the projected-area for the non-diagonal

(AA,nd) and diagonal (AA,d) members is given by

AA,nd = LTA,nd (A.12)

and

AA,d =
√

LTA,d (A.13)

where TA,nd and TA,d are the non-diagonal and diagonal in-plane strut thickness for Design A, re-

spectively. Since for the sponge And/Ad ≈ . , it follows that

TA,nd = TA,d. (A.14)

Finally, for the case of rectangular cross-section we used Design A as our base model, and thus

constrained the total volume of all the other unit cell designs with rectangular cross-section to be

equal to that of Design A, namely,

VA,T = Vα,d + Vα,nd = LH(TA,nd +
√

TA,d) = LHTA,nd
(

+ √
)
, (A.15)

with α ∈ B, C and D. Moreover, for Designs B-C, which comprised diagonal elements, we also

constrained the volume ratio of the non-diagonal to diagonal elements to be the same as in Design

A,
Vα,nd

Vα,d
=

√
, (A.16)
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with α ∈ B and C.

T

H

~L
~L

D

Figure A.3: Unit cell for Design B. Schematics of the unit cell forDesign B (an alternating open and closed
cell structure resembling the sponge and employing a single set of diagonal bracings). On the left we indicate
the geometric parameters of this design considering a circular cross-section, while on the right we show the
geometric parameters of this design considering a rectangular cross-section.

A.2.2 Design B

Design B was similar to the sponge design (Design A) and was likewise characterized by an alter-

nation of open and closed cells (figure A.3). However, instead of having two diagonals offset from

the nodes, in this design only one diagonal passes through the nodes crossing though every other

cell.

Circular cross-section

For this design with circular cross-section, the non-diagonal and diagonal volumes are given by

VB,nd = VA,nd = πLDB,nd (A.17)
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and

VB,d =
√

L

(
π
DB,d

)
, (A.18)

respectively. Using the constraints provided by equation A.10 and equation A.11, as well as the

above volumes, we obtain

DB,nd = DA,nd (A.19)

and
DB,d

DB,nd
= √ . (A.20)

Rectangular cross-section

For this design with circular cross-section, the volume of the non-diagonal and diagonal members

are given by

VB,nd = LTB,ndH. (A.21)

and

VB,d =
√

LTB,dH. (A.22)

Using the constraints provided by equation A.15 and equation A.16, as well as the above volumes,

we obtain

TB,nd = TB,d (A.23)

and

TB,nd = TA,nd (A.24)
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T

H

~L
~L

D

Figure A.4: Unit cell for Design C. Schematics of the unit cell forDesign C (all cells filled with diagonal brac-
ings, as is typically found in infrastructure applications). On the left we indicate the geometric parameters of
this design considering a circular cross-section, while on the right we show the geometric parameters of this
design considering a rectangular cross-section.

A.2.3 Design C

Design C was inspired by the Town lattice truss design introduced by architect Ithiel Town in

1820 [94,95] and consisted of every cell being reinforced by diagonal trusses passing through the

nodes (figure A.4).

Circular cross-section

For this design with circular cross-section, the volume of the non-diagonal and diagonal members

of the unit cell are given by

VC,nd = VA,nd = LπDA,nd (A.25)

and

VC,d = VA,d =
√

LπDA,d, (A.26)
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respectively. Using the constraints provided by equation A.10 and equation A.11 we obtain

DC,nd = DA,nd (A.27)

and
DC,d

DC,nd
= . (A.28)

Rectangular cross-section

For this design with circular cross-section, the volume of the non-diagonal and diagonal members

of the unit cell are given by

VC,nd = LTC,ndH (A.29)

and

VC,d =
√

LTC,dH (A.30)

Using the constraints provided by equation A.15 and equation A.16, as well as the above volumes,

we obtain

TC,nd = TC,d, (A.31)

and

TC,nd = TA,nd. (A.32)
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T

H

~L
~L

D

Figure A.5: Unit cell for Design D. Schematics of the unit cell forDesign D (square lattice with no diagonal
reinforcement). On the left we indicate the geometric parameters of this design considering a circular cross-
section, while on the right we show the geometric parameters of this design considering a rectangular cross-
section.

A.2.4 Design D

Design D comprised only the square grid without diagonal reinforcement (figure A.5). As such,

for this design we allocated the total material volume to the non-diagonal elements. Note that this

design is well known to be unstable and very limited in resisting shear forces [103,104].

Circular cross-section

Since

VD,T = VD,nd = VA,nd = πLDD,nd, (A.33)

using the constraint provided by equation A.10 we obtain

DD,nd = DA,nd

√
+

√
. (A.34)
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Rectangular cross-section

Since

VD,T = VD,nd = LTD,ndH, (A.35)

using the constraint provided by equation A.15 we obtain

TD,nd =
(

+ √
)
TA,nd (A.36)

A.3 Experimental Setup

A.3.1 Fabrication

We fabricated each of the lattice specimens with a Stratasys Connex500 multi-material 3D printer

using the digital material FLX9795-DM. During the fabrication process, a photosensitive liquid

precursor (the 3D printer ”ink”) is deposited in a voxel-by-voxel fashion. Several precursors are

used to print multiple materials with different properties and the resulting modulus can be tuned

by varying the concentration of photo-initiator. A UV light cross-links the liquid precursors in a

layer-by-layer fashion and this process is repeated until the full 3D model is built. Each of the

specimens were printed in parallel along with the print-head direction as to minimize material

anisotropy between specimens. Depending on the liquid precursor composition and the degree

of cross-linking, a broad range of mechanical properties can be achieved from stiff thermoplastic-

like to soft rubber-like materials. For the samples fabricated for this study, we tuned the process

to realize a material with an initial shear modulus μ = . MPa. The dimensions of the fabricated

samples (as measured with a caliper) are shown in table A.1, and all fabricated lattices had depth
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(through thickness) H = mm.

A.3.2 Testing

All samples were tested using an Instron 5969 with a compression speed of 0.2 mm/min in order

to allow material viscoelastic relaxation, thus achieving the material’s fully elastic behavior. Note

that the specific compression speedwas determined by testing similar structures at different loading

rates until the stress-strain curve achieved a rate independent solution.

To test the response of the specimens under uniaxial compression, we used standard compres-

sion plates with a kN load cell. The response under bending was also characterized using a

3-point bend test mount and a N load cell. Three specimens of each design were tested sep-

arately. The printing accuracy is reported in table A.1 as the measured mean for all 3 specimens

in each of the components of the structure. The ideal expected values for each of the respective

parameters are provided in table A.1. While similar results were obtained regardless of whether the

models were loaded parallel or perpendicular to the print direction, for experimental consistency

all tests were performed with models oriented parallel to the print direction. All specimens used

a compression speed of 0.2 mm/min in order to allow material visco-elastic portion to relax, thus

achieving the material’s fully elastic behavior. The specific compression speed was determined

by testing various similar structures at different rates until the stress-strain curve achieves a rate

independent solution.
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A.3.3 Testing Slender Structure Three Point Bend Testing

Specimens were printed as slender structures consisting of 1 by 5.5 unit cells (2 by 11 square grid)

with square spacing L = mm and extruded depth H = mm. The 3D printed specimens were

placed individually on an Instron 5969 with a 3-point bend test mount using a N load cell. If

applicable, the filled cells (cells containing diagonal crossings) were aligned with the force points

to magnify the effects of each design. Although, similar trends persist when experiments were

conducted in the inverse alignment, namely when force points are applied to non-filled cells (cells

containing no diagonal bracings). All specimens used an indenter speed of 0.2 mm/min in order to

allow material visco-elastic time to fully relax. This speed was specified to maintain consistency

with the block uniaxial testing experiments.

A.4 Finite Element (FE) Analysis

The finite element analyses presented in this article were conducted using ABAQUS/Standard. All

models were constructed using 1D Timoshenko beam elements (ABAQUS element type B22) and

all beam crossings were assumed to be welded joints. For each instance, seeding of the mesh was

chosen to be at least 1/10 of the minimum beam length. The response of the material was captured

using an incompressible Neo-Hookean material model with shear modulus μ = . MPa. Due

to small inconsistencies in the 3D printing process (table A.1), we adjusted the dimensions of the

FE models accordingly by applying a mass correction based on data derived from the 3D-printed

models in Main Text Figs. 2(f) and 4(b).

To reduce the computational cost, in most of our analyses, we took advantage of the periodicity

of the structures and investigated their response using the unit cells shown in figure A.6. To subject
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the unit cells to a macroscopic deformation gradient F periodic boundary conditions were imposed

on all cell boundaries by enforcing [106,107]

uAi
α − uBi

α = (Fαβ − δαβ)(XAi
β − XBi

β ), i = , , ...., K (A.37)

where δαβ is the Kronecker delta, uAi
α and uBi

α (α = , ) are displacements of points periodically

located on the boundary of the unit cell. Moreover, XAi
α and XBi

α (α = , ) are the initial coordinates

of points periodically located on the boundary of the unit cell and K denotes the number of pairs

of nodes periodically located on the boundary of the unit cell. Note that the components of F

can be conveniently prescribed within the finite element framework using a set of virtual nodes.

The corresponding macroscopic first Piola-Kirchoff stress is then obtained through virtual work

considerations [106,107]. To subject the structures to uniaxial compression, we prescribed

F =

UNSET
+ ϵy

 , (A.38)

where ϵy is the macroscopic applied strain. Moreover, in order to investigate the structure’s re-

sponse for different loading directions, we rotated the unit cell model by an angle θ and re-applied

the above periodic boundary conditions using the rotated geometry coordinates. To determine the

linear stiffness for the infinite structures we performed a small strain linear elastic analysis. For

all buckling analyses, we performed a linear stability buckling analysis (*Buckling command

in ABAQUS input file). Since buckling may alter the periodicity of the structure, we considered

super cells consisting of M×M undeformed RVEs with M ∈ [ , ] subjected to periodic boundary

conditions and calculated the critical strain for each of them. The critical strain of the infinite pe-
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riodic structure was subsequently defined as the minimum critical strain on all considered super

cells. The results reported in figure A.7 show that for Design A-C the critical strain is identical for

all considered values of M, indicating that the structure undergoes a local (microscopic) instability

with wavelength corresponding to the size of the RVE. Design D, on the other hand, undergoes a

global (macroscopic) instability, as the minimum critical strain is observed forM = (figure A.8).

Design A Design B

Design C Design D

Figure A.6: RVE used for the different designs. Schematics of the RVEs used forDesign A-D. Periodic bound-
ary conditions are applied on the nodes that intersect with the red dashed line.
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Design A Design B

Design C Design D

Figure A.7:Global versus local instabilities. In each contour plot, we report the critical strain as a function
of θ and the size of the super cell. For each of the simulations, periodic boundary conditions are applied along
the outer perimeter of theM×M structure. This plot conveys that forDesigns A-C the prominent bucklingmode
is the local mode, whereas forDesign D, the prominent mode is a global mode. Choosing a sufficiently largeM
allowsDesign D to converge to a finite value for each θ.

Figure A.8: Critical strain for Design D at three selected loading angles. As the number of minimumRVEs
M considered increases, the value for the critical buckling strain asymptotically approaches a constant.
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A.4.1 Local and Global Instabilities

Local versus global instabilities are driven by the fundamental wavelength of a particular structural

instability. These wavelengths are typically unknown at first and can be fictitiously constrained

within the length-scale of a periodic unit cell simulation. As a result, simulations typically overes-

timate (provide a higher than correct value) the critical buckling strength of a structure. To address

this potential concern, we created simulations for each of the considered geometries where we con-

sider an M×M minimum RVE unit cell, where M is the number of uni-cells. The results portrayed

in figure A.7 show that forDesign A-C no matter how large we make the periodic structure, we still

obtain the same result, indicating that the structure undergoes a local (microscale) instability of the

size of the minimum RVE unit cell. Design D, on the other hand, undergoes a global (macroscale)

instability as evident in figure A.7 by the buckling strain dependence on the number of cells M.

Therefore, to obtain the value for all θ inDesign D, we analyze for select θ what is the valueM nec-

essary to achieve convergence in obtaining the macro-scale instability. That value as determined

in figure A.8 is M = .

For infinite structures modeled using period boundary conditions, it is important to realize the

distinction between local instabilities (i.lities with wavelength that are of the order of the size of

the unit cell) and global instabilities (i.e. instabilities with large wavelengths in comparison to the

size of the unit cell). In order to capture any global instabilities potentially missed by using the

minimum RVE, we further develop our period numerical studies to include RVEs that tessellate

the unit cells presented in section A.2. For all designs, we increase the domain size by tessellating

up to 20x20 unit cells (creating a base grid of 40x40 square cells). For Designs A-C, the critical

bucking strain and modes do not change for larger unit cells suggesting that there does not exist a

106



global instability. Whereas, forDesign D, as we increase the domain size (addmore unit cells to the

tessellation), the instability wavelength continues to grow with the size of the domain, suggesting

a global macroscopic instability that depends on the size of the domain. The critical buckling

strain is inversely proportional with the RVE size and approaches 0 in the limit that the RVE size

approaches infinity. It is well known and documented that Design D is unstable when loaded in

uniaxial compression.
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A.4.2 Additional numerical results

(a)

(b)

von Misses Stress

von Misses Stress

Figure A.9:Mechanical response for different loading conditions. For all cases presented in this figure,
we consider a structure with 11×2 cells (5.5 RVEs) and hinged boundary conditions applied to cellswith diag-
onal reinforcements. (a) In this case, a point deflection δ is applied to the top center of the structure while the
bottom outside corners have constrained deflections, but unconstrained rotation. The normalized reaction
force is plotted as a function of the δ for the four considered designs. Moreover, on the right we show numerical
snapshots of the four designs for δ/L = . . The colors in these pictures provide ameasure of the normalized
vonMises stress. (b) In this case a distributed load is applied across the top of the structure while the bottom
outside corners have constrained displacements, but unconstrained rotation. The normalized total reaction
force is plotted as a function of the deflection for the four considered designs. On the right we show numerical
snapshots of the four designs for δ/L = . , where δ is the vertical deflection of the topmid-point from the
undeformed configuration. The colors in these pictures provide ameasure of the normalized vonMises stress.
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(a)

(b)

von Misses Stress

von Misses Stress

Figure A.10:Mechanical response for different loading conditions. For all cases presented in this figure,
we consider a structure with 11×2 cells (5.5 RVEs) and hinged boundary conditions applied to cellswithout
diagonal reinforcements. (a) In this case, a point deflection δ is applied to the top center of the structure while
the bottom outside corners have constrained deflections, but unconstrained rotation. The normalized reaction
force is plotted as a function of the δ for the four considered designs. Moreover, on the right we show numerical
snapshots of the four designs for δ/L = . . The colors in these pictures provide ameasure of the normalized
vonMises stress. (b) In this case a distributed load is applied across the top of the structure while the bottom
outside corners have constrained displacements, but unconstrained rotation. The normalized total reaction
force is plotted as a function of the deflection for the four considered designs. On the right we show numerical
snapshots of the four designs for δ/L = . , where δ is the vertical deflection of the topmid-point from the
undeformed configuration. The colors in these pictures provide ameasure of the normalized vonMises stress.
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(a)

(b)

`

von Misses Stress

von Misses Stress

Figure A.11:Mechanical response for different loading conditions. For all cases presented in this figure,
we consider a long slender realization of each design consisting of × cells (5.5 RVEs). (a) In this case, a point
deflection δ is applied to the bottom right of the structure while the left edge of the structure is fixed. The nor-
malized total reaction force is plotted as a function of the deflection for the four considered designs. Moreover,
on the right we show numerical snapshots of the four designs for δ/L = . . The colors in these pictures provide
ameasure of the normalized vonMisses stress. (b) In this case a distributed load is applied across the top of the
structure while the left edge of the structure is fixed. The normalized total reaction force is plotted as a function
of the deflection for the four considered designs. On the right we show numerical snapshots of the four designs
for δ/L = . , where δ is the vertical deflection of the top right edge-point from the undeformed configuration.
The colors in these pictures provide ameasure of the normalized vonMises stress.
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(a)

(b)

`

von Misses Stress

von Misses Stress

Figure A.12:Mechanical response for different loading conditions. For all cases presented in this figure,
we consider a long slender realization of each design consisting of × cells (5.5 RVEs). (a) In this case a deflec-
tion δ is applied to the right edge of the structure while the left edge of the structure is fixed. The normalized
total reaction force is plotted as a function of the applied deflection for the four considered designs. Moreover,
on the right we show numerical snapshots of the four designs for δ/L = . . The colors in these pictures pro-
vide ameasure of the normalized vonMisses stress. (b) In this case a distributed load is applied across each level
of the structure while the left edge of the structure is fixed. The normalized total reaction force is plotted as
a function of the deflection for the four considered designs. On the right we show numerical snapshots of the
four designs for δ/L = . , where δ is the horizontal deflection of the right mid-point from the undeformed
configuration. The colors in these pictures provide ameasure of the normalized vonMises stress.
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Figure A.13: Comparison between experimental and numerical results. This figure shows experimental
snapshots of the experimental specimens at an applied 8% compressive strain overlaid with a cutout of the rep-
resentative deformation predicted by our FE analyses. The close agreement between the experiments and simu-
lations suggests that the FE simulations are accurately capturing the physical deformation of the specimens.

(a) (b) (c)

2S

L

Figure A.14: Effect of diagonal spacing and mass ratio on the response of Design A with rectangular
cross-section. (a) Evolution of the critical strain as function of the spacing between diagonals. (b) Evolution of
structural stiffness as a function of themass ratio λ = Vnd/Vd. (c) Evolution of critical strain as a function of
themass ratio λ. For each of the plots, the gray dashed vertical line indicates the parameter ofDesign A. These
results demonstrate thatDesign A, the sponge design, is very close to the optimal one, when considering each
parameter individually. All designs are characterized by the same total volume.
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(a) (b) (c)

2S

L

Figure A.15: Effect of diagonal spacing and mass ratio on the response of Design A with circular
cross-section. (a) Evolution of critical strain as function of the spacing between diagonals. (b) Evolution of
structural stiffness as a function of themass ratio λ = Vnd/Vd. (c) Evolution of critical strain as a function of
themass ratio λ. For each of the plots, the gray dashed vertical line indicates the parameter ofDesign A. These
results demonstrate that the shape of the cross-section does not have a significant role, as these results are simi-
lar to those presented in figure A.14 for a lattice with rectangular cross-section. All designs are characterized by
the same total volume.

(a) (b)

Design A Design B Design C Design D

(c)

Figure A.16: Response of Design A-D with circular cross-section. (a) Evolution of the structural stiffness
as a function of loading angle θ for lattices of infinite size. (b) Evolution of the effective buckling stress for the
different lattice designs as a function of loading angle θ. Results are obtained by simulating a super-cell with
10 by 10 units and periodic boundary conditions. (c) Numerically predicted stress-strain curves for the 4 con-
sidered lattices when compressedwith θ = . For all plots, the color of the line corresponds to the respective
design color depicted on the bottom.
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θ = °45

Design A Design DDesign B Design C

θ = °0

Figure A.17: Critical modes of Design A-D at θ = ◦ and θ = ◦. These critical bucklingmodes were
calculated using a 10 by 10 super-cell and the snapshots shown here are the center 2x2 cells of the full 10x10
model. Designs A-B in this figure exhibit a similar deformation pattern when loaded at 0◦ or 45◦. However, for
Design C-D, different buckling patterns are triggeredwhen loaded at 0◦ and 45◦.

Design A Design B Design C Design D

θ = °0

θ = °45

Figure A.18:Modes of finite size structure comprised of 3x3 unit cells. This figure shows the critical buck-
lingmodes obtained for finite geometries forDesign A-D loaded in uniaxial compression. The top row corre-
sponds to a structure angled at ◦, as in the experiments. The second row corresponds to the same structure
however rotated by ◦ and cut tomaintain the same size as the row above. Each column in this figure corre-
sponds to a different design. For each of the geometries, a slightly thicker frame is constructed to localize most
of deformation away from the edges of the structure. These results convey that the diagonally reinforced ge-
ometries are not susceptible to edge effects when using at least 3 unit cells, whereas the non-diagonally rein-
forced structure is more susceptible to edge effects.
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Design A Design B Design C Design D

θ = °0

θ = °45

Figure A.19:Modes of finite size structure comprised of 10x10 unit cells. This figure shows the critical
bucklingmodes obtained for finite geometries ofDesign A-D loaded in uniaxial compression. The top row corre-
sponds to a structure angled at ◦, as considered in the experiments. The second row corresponds to the same
structure however rotated by ◦ and cut tomaintain the same size as the row above. Each column in this figure
corresponds to a different design. For each of the geometries, a slightly wider frame is constructed tominimize
edge effects.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure A.20: Effect of sample size on critical stress. Evolution of the effective buckling stress as a function
of the loading angle θ for finite-size lattice structures comprisingM byM unit cells, whereM ranges from (a)
1 to (j) 10. The shaded parts in (a) - (j) represent the lowest six bucklingmodes range. All plots provide a clear
indication on the superior performance ofDesign Awhen comparing toDesigns C-D, whenM > .
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Design A Design B

Design C Design D

(a) (b)

Figure A.21: Effect of joint stiffness analysis on critical stress. To evaluate the influence of the joints on
the effective buckling stress ofDesigns A-Dwe conduct FE analysis on a period unit cell withmodified stiffness
on elements near the joints. In particular, we set thematerial stiffness to Ebox for the elements within a box of
edge length Lbox = . L (see inset schematic in (a)). (a) Evolution of the normalized effective critical stress
for varying the joint stiffness ratio Ebox/E. (b) Schematic ofDesign A-D unit cells with the location of the joints
highlighted by red dots.

5.2x10-2 5.3x10-2 5.5x10-2 4.1x10-2

1.5x10-2 1.8x10-2 2.2x10-2 1.1x10-2

(a)

(b)

Figure A.22: Stress Analysis. Numerical snapshots extracted from non-linear FE analysis (with first mode im-
posed imperfection) at an imposed strain ε = . . (a) The color indicates the normalized vonMises stress σvm
with themaximum value for each structure indicated above each figure. (b) The color indicates the normalized
maximum principle stress σmp with themaximum value for each structure indicated above each figure.

117



(a) (b)

Figure A.23: Effect of disorder on critical stress. To evaluate the influence of disorder on the effective buck-
ling stress ofDesign A, we conduct FE analysis on a period unit cell on which we vary themass allocated between
diagonals going in different directions. For all analysis presented, the total volume allocated between diagonals
and non-diagonals remains constant, namely λ =

√
. Va/Vb defines the ratio between the volume allocated to

the two families of diagonals (with Va + Vb = Vnd/
√

). (a) Evolution of the effective buckling stress as a function
of Va/Vb for θ = . We find that for . < Va/Vb < . disorder has aminor effect on the effective buckling
stress. (b) Schematics of selected unit cell with different diagonal volume allocations Va/Vb.

Sa

Sb

Sa
Sb

S
a

S
b

Sa
Sb

L/2

(a) (b) (c)

Figure A.24: Effect of disorder on critical stress. To evaluate the influence of disorder on the effective
buckling stress ofDesign Awe conduct FE simulations on a periodic unit cell in which we vary the location and
orientation of individual diagonals, while maintaining periodicity of the structure. For all analysis presented,
the total volume of the diagonals remains constant and equal to Vnd/

√
. (a) Schematic illustrating the spac-

ing Sa and Sb, defining the position of each diagonal. (b) Schematics of unit cell with varying Sa and Sb (with
Sa, Sb ∈ [ , L]). (c) Effective buckling stress for 2,500 unit cell simulations, in which we perturb the sponge
strut spacings Sa and Sb using a GaussianN withmean μ = , standard deviation σ = . andmagnitude ψ,
namely, Sa/L = − /(

√
+ ) + ψN ( , . ) and Sb/L = + /(

√
+ ) + ψN ( , . ). The redmarkers indicate

themean for each considered ψ containing n = simulations per discrete value of ψ. We find that the applied
perturbation does not alter themean effective critical stress and that the variation of σ̄cr is bounded between
. × − μ and . × − μ.

A.5 Optimization Analysis

In an effort to identify the diagonal reinforcement resulting in a square lattice with the highest

critical load, we used a Python implementation of the Covariance Matrix Adaptation Evolution
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Strategy (CMA-ES) [162]. CMA-ES is an evolutionary algorithm that is used to solve optimization

problems by iteratively solving several forward problems to adjust a covariance matrix of the so-

lution. Since it is a derivative free algorithm, CMA-ES is well suited for optimization problems of

high dimensionality and non-linear parameter topology. In this study we used CMA-ES to identify

• the number of diagonals, N

• the volume ratio of non-diagonal to diagonal members, λ = Vnd/Vd. Note that, since for a
lattice with N diagonal members

Vnd = TndLH, (A.39)

Vd =
√

NTdLH, (A.40)

for a given λ Tnd and Td are given by

Tnd =
λ
+ λ

(
. L+ .

√
L
)
, (A.41)

Td = √
N( + λ)

(
. L+ .

√
L
)
, (A.42)

where we have enforced equation A.1 and equation A.9.

• the separation between each even set of diagonals, Si for i ∈ [ , ] (figure A.25)

resulting in a lattice structure with the largest critical load. For such an optimization problem,

the number of optimization variables increased with the number of diagonals incorporated in the

model (i.e. the total number of parameters are + (N−(N mod )) for a given optimization instance

with N number of diagonals). In all of the runs we assumed that all diagonals are oriented at 45◦

with respect to the non-diagonal members and that Vd and Vnd were distributed equally among

the diagonal and non-diagonal elements, respectively. Furthermore, to ensure the symmetry, we

assumed that S i− = S i (i = , , ...,N/ ) if N is an even number and S = and S i− = S i

(i = , , ..., (N− )/ ) for odd values of N (figure A.25).
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The algorithm’s initial values were chosen to be in the center of the design space, namely,

λ = and diagonal separation for the even set of diagonals Si = . L. The covariance matrix was

initialized uniformly with a standard deviation half of the domain space, which was normalized

and constrained to remain between 0 and 1. The optimization was evaluated in a uniaxial loading

condition aligned parallel to the vertical elements with a population size of 30.

For the optimization results presented in the Main Text, we sought to maximize the critical

buckling load of a finite size structure using a single objective target function. The resultant pa-

rameter values from the optimization can be found in table A.2 and a convergence analysis for the

case of N = can be found in figure A.26. Note that we also performed the same optimization

analysis on an infinite periodic structure and the obtained results are shown in figure A.27, and

table A.3.

S2

S1S1

S1S2

S1 S2S3

S1(a) (b) (c) (e)(d)

Figure A.25: Schematic. Schematics highlighting the geometric parameters considered in our optimization
analysis.
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λ S S S S

N = 3.1890 0

N = 0.6778 0.1800

N = 0.8028 0 0.3044

N = 0.7640 0.1912 0.3720

N = 0.3874 0 0.3881 0.7811

N = 0.5036 0.1910 0.5189 0.8712

N = 0.3561 0 0.2899 0.5512 0.8779

Table A.2:Optimal 3×3 finite-sized structures. Geometric parameters defining the 3×3 structures with
highest critical stress identified by CMA-ES for different numbers of diagonals. In each rowwe report the opti-
mal parameter identified for a given number of diagonalsN. For oddN, S is constrained to 0, meaning it is not
allowed tomove from the non-diagonal elements junction. As the number of diagonals is increased λ decreases,
indicating that the algorithm allocates moremass to the diagonal elements.

(a)

(b)

(c)

Figure A.26: Evolution of the objective function and design parameters during CMA-ES iterations.
This figure shows the evolution of (a) the cost function, (b) the normalizedmass ratio λ, and (c) the normalized
diagonal separation S over the course of each iteration of the optimization analysis for a lattice withN = . The
solid line represents themean value for the evolutionary optimization iteration (with population size n =
samples per iteration) and the shaded bounds represent the standard deviation from themean. In this figure, it
is apparent that the optimal value for λ is quickly identified by the algorithm.
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1 Diagonal 2 Diagonals

3 Diagonals 4 Diagonals

(a) (b)

Figure A.27:Optimization analysis for infinite periodic structures. (a) Optimal value of critical buckling
stress for varying number of diagonals. The color of each point represents the optimal mass ratio λ. (b) Optimal
deformed geometries for designs including one to four diagonals. The color in each structure represents the
magnitude of the displacement.

λ S S S S

N = 3.1454 0

N = 0.5614 0.3390

N = 1.4784 0 0.2440

N = 1.0151 0.0989 0.3358

N = 0.9509 0 0.1733 0.3260

N = 0.2009 0.2628 0.5827 0.8881

N = 0.2962 0 0.4197 0.6917 0.9126

Table A.3:Optimal structures of infinite extent. Geometric parameters defining the infinite structures with
highest critical stress identified by CMA-ES for different numbers of diagonals. Each column of the table cor-
responds to the optimal value of a parameter. Each row corresponds a determinedN number of diagonals. For
oddN, S is constrained to 0, meaning it is not allowed tomove from the non-diagonal elements junction. λ on
average decreases as a function ofN, which as expected, means the algorithm is allocatingmore volume to the
diagonals as they are being spread too thin. The distribution of S as a function ofN shows that the algorithm
is attempting to evenly distribute the diagonal spacing, such that the length of the vertical elements without
diagonal bracing is kept the shortest.
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B.1 Porosity Definitions

B.1.1 Small Pores

For the calculations presented in this section, we assume the geometry description outlined in

figure B.1. However, for this case, we do not have a relationship between L and So and thus we

require obtaining these measurements from a biological specimen of the sponge. As in the previous

section, the calculation here entails the following equations:

Ao = ( +
√

)So (B.1)

Af = L (B.2)

The effective surface porosity is given by

φs =
Area of Void
Total Area =

Ao
Af

=
( +

√
)So

L
= ( +

√
)

(
So
L

)
(B.3)

Where obtaining So/L = . , yields

φs = ( +
√

) ( . ) = . (B.4)

In other words, this geometry provides 5.953% void and (100%-5.953 %)=94.047% solid
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Figure B.1: Schematic of central cylinder of a living sponge (lower porosity). The figure on the left shows
the calculation for the area of the voids and the figure on the right shows the total area.

B.1.2 Large Pores

For the calculations presented in this section, we assume the geometry description outlined in

figure B.2. In order to compute the effective surface porosity of the sponge, we first account for

the surface area of the voids, namely, Avoid = ∗ Ao, where Ao is given by the are of a hexagon:

Ao = ( +
√

)So (B.5)

where we can obtain So as a function of L, namely,

So = L(
√

− ) (B.6)

such that Ao becomes,

Ao = ( +
√

)L (
√

− ) = L (
√

− ) (B.7)
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The are of the total area, which we call the area of the frame is denoted by Af and is given by

Af = L (B.8)

The effective surface porosity is given by

φs =
Area of Void
Total Area =

Ao
Af

=

√
−

= . (B.9)

In other words, this geometry provides 41.42% void and (100%-41.42 %)=58.58% solid

Figure B.2: Schematic of central cylinder of a deceased sponge (higher porosity). The figure on the left
shows the calculation for the area of the voids and the figure on the right shows the total area.

B.2 Hydrodynamic CFD Model Details

B.2.1 Model Construction

All hydrodynamicmodels presented in this studywere conducted usingAnsys® Academic Research

CFX, Release 2019 R3. The results were also post-processed using the Academic Research CFX-

Post, Release 2019 R3. The CAD models were created as surfaces in Rhinoceros 3D 6® SR13

2019-2-27 (by Robert McNeel & Associates) with Grasshopper and converted to the solid domain
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used in the hydrodynamic model using Solidworks® 2018 (by Simulia®).

All cylindrical models were constructed to have an outer diameterD, outer diameter with ridges

Dr, inner diameter Di, and height H defined by:

D = mm; Dr = mm; Di = . mm; H = mm. (B.10)

Non-porous Geometries

The considered domain for the non-porous geometries is defined as an elongated rectangular cuboid

fully encapsulating the cylindrical geometry. The cuboid domain is constructed around the geom-

etry such that it’s top and bottom faces match the height H of the cylindrical geometry as seen in

figure B.3. The remaining four faces of the cuboid domain are aligned away from the central axis

of the cylinder defined by the following length scales:

• Inlet face: D

• Outlet face: D

• Left face: D

• Right face: D

whereD represents the outer diameter of the cylinder geometry. These dimensions were defined

exceeding literature suggestions [163] to minimize computational edge effects on the flow profile

near the cylindrical geometry.

Porous Geometries

The considered domain for the porous geometries is defined as a less elongated and much larger

cuboid than that of the non-porous case. Here, the cuboid domain is constructed to align with the
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bottom of the cylindrical geometry, but allowing a large gap exists between the top of the cylindrical

geometry and top face of the domain to account for flow above and through the cylindrical structure

(as seen in figure B.4). Therefore, for all porous geometry cases, we account for one additional

dimension to define the total height of the cuboid domain, namely:

• Top face: H

where H represents the height of the porous cylinder geometry. Likewise, this additional di-

mension is defined exceeding recommendations in [163] to minimize computational edge effects on

the flow profile near the tip of the cylindrical geometry.
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(a)

(b)

Figure B.3: CFD domain illustration for solid models simulations. Illustration showing (a) sideways and
(b) top view of the considered CFD domain. This illustration shows respective boundary conditions and is drawn
to scale.
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Figure B.4: CFD domain illustration for porous models simulations. Illustration showing (a) sideways and
(b) top view of the considered CFD domain. This illustration shows respective boundary conditions and is drawn
to scale.
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B.2.2 Model Validation

The CFDmodel is validated for a flow past themost simple model, namely, the solid cylinder. Here,

we obtain both the Strouhal number and drag coefficient and compare it to established empirical

data for a flow passed a bluff cylinder [8,9]. The comparison between empirical data and numerical

results can be found in figure B.5. Figure B.5(a) and (b) show empirical data from Anderson Jr [8],

Blevins [9], respectively. By inspection results obtained from the CFD, as shown in figure B.5 (c)

and (d), closely match the empirical data for a flow passed a cylinder with a margin of error under

2%. For the drag coefficient measurements shown in figure B.5(c) it is important to note that to

obtain a comparable measure we must average over the shedding oscillation to obtain a mean drag

coefficient measurement.
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Figure B.5: Empirical data for CFD Validation. Established empirical data for flow past a bluff cylinder. (a)
Showsmeasurements for drag coefficient as a function of Reynolds number [8] with blue region indicating the
measurements for Re ≈ , and (b) showsmeasurements for Strouhal number as a function of Reynolds
number [9] with blue region also indicatingmeasurements for Re ≈ , . (c) Shows the simulation results for
the drag coefficient over time and (d) for the PSD spectrum as function of Strouhal number. For both (c) and (d)
the simulation results are shown in blue and the empirical data comparison in black dashed lines.

B.2.3 Model Meshing

The discretization for the model was performed using Ansys® Academic Research ICEM-CFD,

Release 2019 R3. The model mesh is defined to refine the number of elements at the region of

interest, near and behind the cylinder in order to accurately capture the shear layer separation as

well as the vortex shedding formation. Maximum node separation at the surface of the cylinder

and ridges are defined as × − [m] with a high density region around and behind the cylinder

with maximum node separation × − [m] with transition ratio coarsening parameter of . .
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Figure B.6: CFD meshing technique. Image obtained from Ansys® showing themeshing technique employed
for the CFDmodel. Top row shows themesh employed for the non-porousmodels and bottom row shows the
mesh for the porousmodels.

133



B.3 Additional Information

Figure B.7: Sponge Photos and Interpreted Designs. (a)-(j) shows pictures of sponge (top) and its corre-
sponding interpreted design (bottom) . (a)-(j) correspond to Designs 1-10, respectively.
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Figure B.8: Structural Buckling Locations. FEmodel predictions of the locations of failures for each of the
considered designs for various boundary conditions. Circles denote the location of the deformation. For the
bending case, one direction was chosen and shown in the diagram. If circle is missing for a particular structure it
is indicative of a global deformation for that particular structure under that particular loading condition.
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Ridges

Bidirectional 
Ridges

Native 
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Unidirectional 
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Torsion
(a) (b) (c)

Figure B.9: Structural Buckling Deformations. This plot shows the bucklingmodes for the sponge, unidirec-
tional and bidirectional ridge geometries. (a) Highlights the bucklingmode for the geometries under uniaxial
compression loading. Additional modes for more sponges are outlined in figure B.8. (b) Highlights the buckling
modes for the geometries under cantilever bending loading. (c) Highlights the bucklingmodes for the geome-
tries under torsion. These boundary conditions follow the loading described inmain paper.
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(a) (b)

Figure B.10: Lift coefficient changes as result of rotated geometry. This figure shows the time series of the
lift coefficient for geometries in their original configuration with respect to the flow (blue line) and rotated 180◦

with respect to the flow (green line). Results are shown for (a) Bidirectional and (b) Sponge designs. Black dashed
line shows the y = axis of symmetry. Here we see that whenwe rotate the geometry by 180◦ the average lift
is approximately flipped across the y = axis line indicating that the non-symmetric ridge configuration breaks
the flow symmetry and biases the lift to a particular direction.
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C.1 Geometry

Conceptually, our metamaterial is generated from slicing a block, containing a square array of

cylindrical holes, at an angle θ (figure C.1). The cylindrical holes have radius Rh = . mm and

center-to-center distance dh = . mm, such that the porosity of the structure in the undeformed

configuration is φ = πRh/dh = . . The resulting metamaterial has an out-of-plane thickness

T = . mm and elliptical holes on its top and bottom faces with major and minor axis of length

Rh/ cos θ and Rh, respectively.

In this study, we consider finite size samples comprising an array of × holes in the center,

flanked by a column of half holes on all sides to alleviate boundary effects. These samples have

size Xf × Xf/ cos θ × T, where Xf = dh = . mm.

Our metamaterial is activated through hydraulic or pneumatic actuation, and as such, the sam-

ples were made water/air-tight by covering their top and bottom faces with a thin elastomeric layer

(with thickness of Tlayer ∼ . mm). A single pressure input actuation was achieved by connecting

the cylindrical cavities together via a series of rectangular channels. The channels are shown in

figure C.1 and have a height Hc = . mm, and in the final molded form, had a width of 2 mm.
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Figure C.1: Design elements of our inclinedmetamaterial. (a) Shows the inclined cut of our metamaterial from a
square block of elastomeric matrix and its respective dimensions. On right is the exploded view of the assembly
that includes the cut metamaterial and the filmswith its respective dimensions. (b) Shows the construction of
the channel that are located along the top and bottom surfaces of thematamaterial. (c) Outlines the dimensions
of the cut metamaterials in addition to the dimensions necessary to reconstruct the experimental sample.
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C.2 Fabrication

To fabricate the samples, we first produced molds using a Stratasys Objet30 3D printer from Ver-

oBlue (RGD840) material (figure C.2(a)). Before casting, releasing agent (Easy Release 200,

Smooth-On, Inc.) was sprayed on the mold surfaces to further facilitate the de-molding process,

and the samples were then cast using a silicone elastomer material (Zhermack Elite Double 32) (fig-

ure C.2(b)). Once the silicon elastomer was poured, the mold was quickly placed in a degassing

chamber (vacuum chamber) for approximately 8 minutes. This process ensured that any remain-

ing air was removed from the elastomer material prior to curing. Once the degassing process was

completed, the cast mixture was allowed to cure at room temperature and atmospheric pressure for

approximately four hours. After de-molding the planar structure (figure C.2(c)), two thin sheets

were fabricated using the same silicone elastomer material by pouring the uncured rubber onto an

inclined acrylic sheet (figure C.2(d)). The sheets were left to cure for 4 hours. Once cured, the

thin sheets, each measuring ≈0.5mm in thickness were glued to the top and bottom surface of the

metamaterial using the same silicone elastomer (figure C.2(e)). In figure C.2(f) the channels and

the thin sheet are visible. The same gluing process was also used to attach the two molded halves

of the metamaterial to each other (figure C.2(g and h)). As a final step, tubes were punctured into

the center of the ends (the short edge) of the planar structure and sealed with the same silicone

elastomer (figure C.2(i)). The final assembly was left to cure and seal for an additional 4 hours.
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Figure C.2: Metamaterial fabrication. (a) The elastomermixing cup and 3D-printedmold used for creating the
sample. (b) Uncured elastomer is poured into themold. (c) After allowing the elastomer to fully cure, the sample
is removed from themold. (d) Uncured elastomer is evenly poured on top of an acrylic sheet to create a thin film
to be used as top and bottom sheets. (e) Two de-molded components are placedwith channels face down on top
of the cured thin sheet. (f) The thin sheets are glued to the samples using the same uncured silicone elastomer
that was used for the other stages of the casting process. (g) The two structures are aligned, and (h) the two
structures are glued together with the same elastomer. (i) A tube is punctured into the short edge and sealed
with the same elastomer.

C.3 Experiments

C.3.1 Pressure-Volume Curve

To obtain the pressure-volume data, the test specimens were filled with water, while ensuring that

all of the air was removed from its internal cavities. Once each specimen was filled, a volume-

controlled syringe pump (Standard Infuse/Withdraw PHD Ultra Syringe Pump by Harvard Appa-

ratus) was used to withdraw the fluid from the cavities while a pressure sensor (MPX5050DP, NXP

USA Inc.) attached to the withdrawal line measured the pressure inside the sample cavities. The
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withdrawal process was performed slowly, at 100 ml/min, to ensure the pressure reading obtained

on the vacuum line corresponded to the pressure inside of the cavities – avoiding any viscous con-

strictions from the fluid flow in the tube connecting to the sample. Utilizing water allowed us to

understand the pressure-volume relationship of each structure avoiding any spurious effects due to

air compressibility.

For the water experiments, we measured the pressure-volume relationship of each water-filled

specimen in a water tank. This allowed us to characterize the true pressure-volume relationship of

the structure avoiding any spurious effects due to air compressibility. However,since our ultimate

goal is to operate the metamaterial in an environment using an air controlled vacuum source, we

also characterized the pressure-volume relationship of the samples using air as the driving fluid.

Because air is considered a compressible fluid, our volume readings needed to be corrected

for comprehensibility. To do so, we used the Ideal Gas Law to build a relationship between the

compressible pressure-volume curve and the compressibility-corrected pressure-volume curve. We

then compare our air compressibility-corrected pressure-volume curve to that obtained using water

as a the driving fluid. In particular, this correction is achieved by computing the density of air for

a given pressure using:

ρ = (P+ Patm)M/(RT) (C.1)

where P is the pressure gauge reading, Patm is the atmospheric pressure, R is the universal gas

constant, M is the molar mass of air, and T is the air temperature. Using the same information in

addition to the volume of the undeformed cavities in the actuator Vactuator we can also compute the

total mass in the system,

mtotal = (Vactuator)PatmM/(RT). (C.2)
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The mass in the syringe is therefore computed using the prescribed syringe volume Vsyringe

msyringe = ρ(Vsyringe). (C.3)

The mass in the actuator during actuation is obtained through mass conservation as

mactuator = mtotal − msyringe. (C.4)

Then, the mass in the actuator can be converted back to obtain the corrected volume, namely,

V∗
actutator = mactuator/ρ. (C.5)

Close agreement was found when comparing the pressure-volume results utilizing water with the

that of utilizing air as can be seen in figure C.3.

Figure C.3: Volume Correction Plot for θ = ◦. This figure compares the pressure volume relationship be-
tween air andwater as well as with air by correcting the compressibility effects using ideal gas law.

Each specimen was actuated by extracting air from the structure through the tubes placed at

the end. The tubes were attached to a volume controlled syringe pump (Standard Infuse/Withdraw
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PHD Ultra Syringe Pump by Harvard Apparatus) to withdraw the fluid from the cavities

To understand the pressure-volume relationship of the structure, we placed the structure in a

water tank and evacuated all air from the structure by pushing water through one tube and opening

the tube on the other side. Once all air was removed, we closed one end of the specimen and

utilized the syringe pump to evacuate the water at a constant rate while concurrently measuring the

cavity pressure using a pressure gauge.

C.3.2 Measuring out-of-plane displacement

To measure the out-of-plane deformation of each structure, the specimen was painted white with

spray chalk to minimize the reflective index of its surface, and a hand-held 3D scanner (Artec

Space Spider, Artec Studio 14.1.1.75) was used to obtain the full deformation profile of the struc-

ture (figure C.4(a)-(b)). Once the scan was obtained (figure C.4(c)), a Python script was used to

detect the out-of-plane deformation magnitude at the center of each structure in order to capture

the deformation, while avoiding edge effects. The center of the structure was divided into four

regions, with each region being sampled independently to measure the deformations around the

different adjacent hole locations. In each region, we measured δ by taking the highest z-point on

the face and subtracting the lowest z-point on the face, namely δ = max(uz)−min(uz).
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Figure C.4: Out-of-plane displacement-3D reconstructions. (a) The elastomeric sample was coatedwith white
spray chalk to give it a non-reflective surface. (b) A 3D scanner (Artec Space Spider) was used to obtain the full
deformation profile of the structure. (c) 3D computer model of the structure after post-processing.

C.3.3 Light Reflection Experiments

To understand how these structures could be employed to control light reflection, we created a

simple experimental setup that captured the specular light reflection from the surface of the θ =

◦ and θ = ◦ samples onto a vertical projection screen. In this setup, we placed each of the

specimens in the center of a dark room and projected a goose-neck halogen light at a ◦ angle

from the surface of the specimen at a distance of 9.5 cm behind the sample. A black wall, located

9.5 cm in front of the sample, contained an attached letter-sized screen onto which the specular

reflection pattern from the sample was projected (as shown in fig. 3 of the main manuscript). A

video camera was placed perpendicular to the screen and recorded the projected reflection pattern.

As water was removed from the holes using the syringe pump, the reflection pattern was captured

by the camera. The pattern information collected by the camera was then post-processed using

a custom Python script. In this code, each frame was processed independently by systematically

converting the color scale into gray scale. For each frame, the directional mean reflectance, RΩ, was

measured by averaging the brightness of all gray scale pixels contained on the pattern collection

screen.
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C.4 Numerical Simulations

C.4.1 Finite Element Simulations

The finite element analyses presented in this article were conducted usingABAQUS/Explicit (SIMU-

LIA, Providence, RI). The model geometry was constructed using solid 8-node linear brick, re-

duced integration 3D elements (ABAQUS element code C3D8R) for the porous metamaterial. The

top and bottom films used to seal the porous metmaterial were meshed using 4-node doubly curved

thin shell elements with reduced integration (ABAQUS element code S4R). It is important to note

that in these models, we did not incorporate the geometry of the channels as we defined a fluid

filled cavity model comprising all of the holes. Actuation of the models was achieved by shrinking

the volume of the fluid filled cavity. In all our simulations, the response of the elastomeric ma-

terial was captured using an incompressible Neo-Hookean material model with normalized shear

modulus μ.

In figure C.5 we present numerical snapshots for five different hole arrangements: (i) square ar-

ray; (ii) triangular array; (iii) hexagonal array; (iv) rhombitrihexagonal array; (v) trihexagonal array.

In full agreement with previous studies [150], we found that when the holes’ axes are perpendicular

to the top and bottom surfaces (i.e. θ = ), buckling triggers a planar geometric transformation.

For θ = ◦, all geometries exhibited different buckling-induced out-of-plane deformation patterns.

Finally, the numerical results for the metamaterial with a square array of holes closely match the

experimental data reported in Fig. 1 of the main text, confirming the validity of our simulations.
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Figure C.5: Buckling-induced surface geometries for different hole patterns. Finite Element results for five hole
arrangements with θ = ◦ (top) and θ = ◦ (bottom) at ΔV/V = and ΔV/V = − , for square, triangular,
hexagonal, rhombitrihexagonal, and trihexagonal arrays of holes. In the images, we show the normalized out-of-
plane displacement, uz/Rh.

C.4.2 Ray Tracing Simulations

To investigate the underlying physics driving the scattering of light for the deformed ◦ sample

and not the deformed ◦ sample, we developed a ray tracing simulation using COMSOL Multi-

physics 5.0 (COMSOL Inc., Burlington, MA) Ray Tracing Module. To create the geometry for

the COMSOL model, we exported the deformed/undeformed finite metamaterial geometry from

ABAQUS and boolean subtracted it from an equilateral cube with edges approximately three times

the length of the metamaterial length Xf. This subtracted cube, containing a void in the shape of

the metamaterial, served as the underlying geometry for the light medium in the geometric optics

module with a material refractive index of n = . To solve for the ray tracing, in this module,

the algorithm obtains the time-dependent ray trajectory through solving the six coupled first-order
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ordinary differential equations

dk
dt

= −∂ω
∂q

and dq
dt

= −∂ω
∂k

(C.6)

where k is the wave vector, q is the position vector, ω is the angular frequency, and t is time.

A release grid of 9 by 9 rays was initialized on the boundary of the meshed medium and was

propagated onto the surface of the deformed and undeformed samples. The surface of each sample

was defined to specularly reflect from the wall (i.e. bounce condition). This conditions is dictated

by

nr = ni − cos(ψi)ns (C.7)

where nr is the direction vector of the reflected ray, ni is direction of the incoming ray, ψi is the

angle of the incoming ray, and ns is the surface normal vector. Furthermore, we defined a freeze

wall condition, dictated by k = kc with kc being the ray wave vector at the time of striking the

wall, along the boundaries of optics medium cube to ensure finite time convergence. We defined a

physics controlled ’extra fine’ free tetrahedral mesh for the domain and utilized a time-depended

solver (Generalized-alpha, backward Euler) to solve for the time evolution of the ray tip location.
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C.5 Additional Results

Figure C.6: Deformation for samples with θ = ◦, 15◦, 30◦ and 45◦. Photos of themetamaterial at ΔV/V = 0
(top) and at ΔV/V =-1 configurations for samples with θ = ◦, 15◦, 30◦ and 45◦. Both top and side views are
shown.

Figure C.7: 3D scans of the buckled samples. Top and side view of the scanned profile of samples with (a) θ = ◦

and (b) θ = ◦ at ΔV/V =-1.
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Figure C.8: Sphere and plate placement. (a) Schematics showing the placement locations of the acrylic spheres
on the bottom surface of θ = ◦ sample. In this configuration, the sample always has the same coefficient of
friction independent of ΔV/V . (b) Schematics showing the placement locations of the acrylic spheres on the
bottom surface of θ = ◦ sample. In this configuration, the sample has low friction at ΔV/V = and high
friction at ΔV/V = − . (c) Schematics showing the placement locations of the acrylic plates on the bottom
surface of θ = ◦ sample. In this configuration, the sample has high friction at ΔV/V = and low friction at
ΔV/V = − .

Figure C.9: Frictional properties of themetamaterial without acrylic features. (a) Photographs qualitatively
showing the effect of the buckling-inducedmorphology on the tilting angle ϕcr for which samples with (a) θ = ◦

and (b) θ = ◦ and no acrylic feature attached to their bottom surface, began to slide. We find that for both
samples, ϕcr is not affected by ΔV. (c) Coefficient of friction for the two samples as a function of ΔV/V .
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Figure C.10: Deformation for samples with acrylic features attached to their surface. Photos at decreasing
values of ΔV/V of themetamaterials with (i) θ = ◦ and acrylic plates; (ii) θ = ◦ and acrylic spheres; (iii)
θ = ◦ and no acrylic features; (iv) θ = ◦ and acrylic spheres; (v) θ = ◦ and no acrylic features.
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